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1 Simulation Study

In this section we conduct a simulation study to assess the performance of our
model against model misspecification and sensitivity to prior distributions,
for both model parameters o and 8. Attention will be mainly focused on the
sociability parameter 3 as this represents the quantity of central interest. We
simulate 100 datasets each containing 100,000 events, with time-varying co-
variates and corresponding event times (following exponential distributions)
generated according to the model proposed in (4.1). The sizes of the client
and server sets are set to |X| = |Y| = 200. The number of clusters and
their sizes were generated uniformly at random. The nuisance model co-
efficients are set to a = (1.5,1.5,1.5,1.5). For the clustering formulation,
we set f1; =2forl =1,...,L and B2, = 2 for m = 1,..., M, while for
the latent formulation we set the single latent coefficient to 8 = 2. For the
cluster formulation, we report the values (5, and [ averaged across cluster
dimensions, for ease of explanation.

Model misspecification is evaluated omitting important covariates of the
model, i.e. either omitting cluster-level or latent-feature covariates. In par-
ticular, for the clustering case we consider two different scenarios: in the first
we omit server clustering and we only perform client clustering while for the
second we omit both client and server clustering. The first scenario corre-
sponds to setting B2, = 0, while the second corresponds to setting both
By =0and Bo,, =0, for i =1,...,L and m = 1,..., M. For the latent
case, this corresponds to 8 = 0. In addition, for both model formulations we
consider the following choices of prior distributions:

L a, By ~ N(0,1),
2. a, By ~ N(0,5),



3. a, By ~ N(0,100),

namely a standard normal prior, a weakly informative normal prior and a flat
prior. Results are shown in Table 1. We report the posterior means of each
coefficient, the associated standard error, and the relative bias, calculated as
(éMC —0)/0, where 6 is the true value of the parameter of interest and éMC
is the Monte Carlo average of the model estimates. Results show that we
achieve good performance under the saturated model and all different prior
distributions, suggesting that model inference is not significantly affected
by the choice of the hyperparameters. In particular, we can notice a slight
increase in both relative bias and standard error when the flat prior is used.
For the latent formulation, model inference has been performed both under
the simple beta-Bernoulli (BeP) process and under the more complex IBP
structure. Note that, under the latent model formulation, different prior
choices for the elements of the latent position matrices U and V (which
are assigned standard normal priors) have not been tested: Changing the
variance of the normal prior would only yield a change in the magnitude of
the coefficient 3, which could be then rescaled. This can be easily viewed
considering the equivalence between the two following models:

1t Agy(t) = r(t) exp{a - (N;(t),Ny_ (), e (t), Lu2(t)) + Bay - ufvy}
x Lixxyne (v}
Ug;, ~ N(0,1),vy, ~ N(0,1),

20 Agy(t) = r(t) exp{a- (N;(t),Ny_ (), Lea (), Lo o(1)) + ulvy}
X Txsrne: Hz,9)}
Ug; ~ N(O,,Bxy>, Vy; ~ N(()?Bﬂﬁy)'



‘ Cluster model (full) Cluster model (82 =0) No clusters (1 = 82 =0) Latent model (BeP) Latent model (IBP)

Coeff  True ‘ Mean (SE) Bias ‘ Mean (SE) Bias ‘ Mean (SE) Bias ‘ Bias Mean (SE) ‘ Bias Mean (SE) ‘ Coeff  True
aj 1.5 1.42 (0.18)  -0.050 | 1.32 (0.37) -0.120 0.90 (0.56) -0.400 1.40 (0.64) -0.067 1.43 (0.18) -0.046 aq 1.5
Qs 1.5 1.45 (0.25)  -0.030 | 1.20 (0.39) -0.200 1.05 (0.58) -0.300 1.37 (0.55) -0.087 1.46 (0.15) -0.026 as 1.5
N(0,1) as 1.5 1.39 (0.21)  -0.073 | 1.25 (0.38) -0.160 0.96 (0.45) -0.360 1.41 (0.58) -0.060 1.42 (0.17) -0.053 as 1.5
’ ay 1.5 1.42 (0.20)  -0.025 | 1.34 (0.33) -0.107 0.90 (0.59) -0.400 1.38 (0.55) -0.080 1.47 (0.21) -0.020 ay 1.5
B 2.0 | 2.09 (0.19) 0.045 1.29 (0.39) -0.355 - - 1.86 (0.49) -0.070 2.03 (0.15) 0.015 B 2.0
B2 2.0 |2.04(0.22) 0.020 - - - - - - - - - -
ay 1.5 1.41 (0.35)  -0.060 | 1.28 (0.55) -0.147 0.98 (0.45) -0.346 1.36 (0.50) -0.093 1.41 (0.35) -0.060 a 1.5
Qs 1.5 1.41 (0.33)  -0.060 | 1.28 (0.34) -0.147 0.97 (0.55) -0.353 1.37 (0.44) -0.087 1.41 (0.33) -0.060 as 1.5
Nos) @8 L5 [ 133(044) 0413 [122(041) 0187 | 096 (0.61) -0.360 129 (0.44)  -0.140 | 1.33(0.44) 0113 |as 15
’ oy 1.5 1.56 (0.45) 0.040 | 1.23 (0.28) -0.180 0.98 (0.54) -0.346 1.41 (0.50) -0.060 1.56 (0.45) 0.040 oy 1.5
B 20 |212(039) 0060 |1.25(0.31)  -0.167 - 178 (0.61)  -0.110 | 1.95(0.42)  -0.025 |3 2.0
B 2.0 | 1.89(0.32) -0.055 - - - - - - - - - -
a1 15 | 137 (055) -0.086 | 1.19 (0.61)  -0.210 | 0.98 (0.49) -0.346 129 (054)  -0.140 | 1.37 (0.55)  -0.086 | a1 15
as 15 | 1.39(043) -0.073 |1.21(0.42)  -0.193 | 0.99 (0.61) -0.340 1.35 (0.47)  -0.100 | 1.39 (0.43) 0073 |as 15
N0y ® 15 | 137T(039) 0086 | 122(039) 0187 | 0.96 (05)) -0.360 1.39 (0.55)  -0.073 | 1.39 (0.43) 0073 |as 15
’ ar 15 | 1.42(045) -0.025 | 1.18(0.45)  -0.210 | 0.93 (0.54) -0.380 1.38 (0.45)  -0.080 | 1.42(0.45) 0025 |as 15
Bi 20 |217(0.54) 0085 | 1.1 (0.44)  -0.440 - 1.82 (0.47)  -0.090 | 1.93 (0.55)  -0.035 |8 2.0
Ba 2.0 | 2.15(0.55)  0.075 - - - - - - - - - -

Table 1: Estimated posterior means (with standard errors) and relative bias of model coefficient parameters for
both model formulations under the different prior distributions considered.



2 Posterior inference

The Metropolis-Hastings (M-H) algorithm is used to draw approximate sam-
ples from the joint posterior distributions of the clustering and latent feature
formulations. For altering o and 3, simple random walks with Gaussian steps
are applied to a randomly selected component, and so hereafter attention is
focused on sampling the clustering configuration or latent features.

2.1 Clustering formulation MCMC algorithm

To initialise the algorithm, row and column cluster configurations are first
obtained through the spectral biclustering algorithm described in Section 5.

Let of, B¢, C! and $! be the values of the parameter vectors and cluster
configurations after ¢ iterations, and suppose at iteration ¢ + 1 we wish to
propose a change to C'. A client x is randomly chosen from X, with current
cluster label C!(z), and then a new cluster label C*(x) is proposed from
a discrete uniform proposal distribution over the integer set {1,..., L' +
1}/{C%x)}, where L! is the current number of client clusters in C*. The
proposed value C*(z) suggests a new cluster configuration C* with L* client
clusters. If [Cgry)| = 1 and C'(z) # L' 4 1, then L* = L' — 1; or else if
|Cet(z)] > 1 and C*(x) = L'+1, then L* = L*+1. In both of these cases, the
dimension of 8 must change, either deleting those components corresponding
to the emptied client cluster or else proposing a new vector of values for a
new cluster from the prior. By the M-H algorithm, the proposed parameters
are accepted with probability

: 1 P(C*’$t7at7ﬁ*|T,’g,)Lt
min ’ P(Ct, $t’ ozt, ﬁt’Tl,E')L* .

Sampling of $ is directly analogous.

2.2 Latent feature formulation MCMC algorithm

For the latent feature model, sparse singular value decomposition with sta-
bility selection, as described in Section 6, is used to provide reliable initial
latent positions of clients and servers, parametrised through U, V, Ay, Ay.
Suppose at iteration t 4+ 1 we wish to propose changes to Ut and A’fj. (Anal-
ogous approaches are used to sample Vt and A@) In the following, for
notational convenience we will omit the subscript from Ay, which will be
simply denoted A.



o Sampling A.p: For a randomly sampled client x, let
K. ={k|1 <k < Ky,AL, =1}

be the features currently activated for that client in the latent feature
model. Further, for k € {1,..., Ky} let di, = > .y Al be the number
of clients with feature k currently active.

For a randomly chosen feature k € {1,..., Ky + 1}, we can resample
0 from its full conditional distribution,

P(Agkl AL (s ) < PE T, UV, @, B)P(Agi] AL (1),

where A_ ) is the A matrix excluding the A(zk) element and the
second term of the equation is the conditional prior distribution for the
new value of Ayy. If di. > 1 or AL, =0, then

()24 (1] — df)! =2
x

P(Agk] AL () =

Alternatively, if d, = A!, = 1 such that z is the only client with
feature k active, then U may potentially decrease in dimension and by
the recursive formula for the Poisson distribution we have

P(Ayx = HAt_(xk)) B 0
P(Agr = 0]AY ) IXIIEE]

Finally if £ = (Ky + 1), proposing an increase in dimension of U,

P(Agr = HAt_(mk)) 0

B(Au = 0[AL ) [XI(KE + 1)

o Sampling u.r: Simple random walks with Gaussian steps are applied
to each randomly selected value i, of U.

e Sampling 6: Under the IBP model, for each client = the distribution of
the number of sampled features is Poisson(6/z); assuming the conju-
gate prior I'(ag, by) for 6§, samples can be drawn directly from the the

posterior distribution which is I'(ag + Ky, by + le)ill 1/z).



3 Normality test for A

In this section we assess approximate normality for the matrix A, which is
used in the penalised regression problem

A 2
IA — suv® || + puPi(s,u) + puPa(s,v).

We perform Shapiro-Wilk normality tests for normality on each row of
the A matrix, corresponding to each client in the network. Figure 1 shows
the distribution of the p-values resulting from the tests: we can notice that
in the majority of the cases there is no departure from normality.
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Figure 1: Distribution of Shapiro-Wilk tests p-values for A.

4 Evaluation of MCMC sampling

In this section we provide details about the computational performance of the
sampling scheme adopted. The total number of iterations for each of the 15
sample repetitions was set to 5,000, after a burn-in phase of size 1,000. Table
2 shows the effective sample sizes and acceptance ratios for each parameter,
estimated under both model formulations. Again, we report average ESS
values for 4 and fs.

Then, we assess the chain convergence and mixing through the marginal
likelihood for each MCMC iteration (Figure 2), which measures the goodness-
of-fit of the saturated model. The process appears stationary as the number
of iterations increases. Finally, to find an optimal estimate for burn-in cut-
off, we have run the MCMC chain with different burn-in sizes, and the ESS



Cluster model
a; as a3 Qy b1 B2
ESS 1423 1766 1401 1245 1343 1733
AR 022 022 023 025 022 021

Latent model
(o751 (%)} 0%} Q4 5
ESS 1782 1911 1832 1792 1981
AR 0.21 026 031 033 0.23

Table 2: Effective sample size (ESS) and acceptance ratio (AR) for each
coefficient in the cluster model (top table) and latent model (bottom table).

of each variable has been plotted against burn-in: if the burn-in period is
estimated to be too short this will reduce the ESS size. Analogously, with a
too long burn-in period, informative samples are thrown away, thus reducing
the ESS. The ESS should be maximised at the optimal estimate of the burn-
in. Figure 3 shows the ESS at varying burn-in sizes for the latent structure
parameter 3, which is the coeflicient of main interest. Here, a burn-in phase
of size 1000 appears to be a suitable choice.



|
I —
N 0o
T
\

|
N
=~
T

Log-Likelihood
e
[N}
T
|

|
o
=
T

| | | | |
0 1,000 2,000 3,000 4,000 5,000

|
o
ot

T

\

[
w
o

T

Log-Likelihood
|
w
T
|

|
~

| | | | |
0 1,000 2,000 3,000 4,000 5,000
Iteration Number

Figure 2: Log-likelihood vs. number of MCMC iterations, for the cluster
formulation (top), and for the latent formulation (bottom).
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Figure 3: ESS vs burn-in size for the parameter g in the full latent feature
model, under the IBP prior.
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