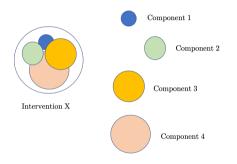
Disentangling interactions between components in a network of complex health interventions

Silvia Metelli¹, Anna Chaimani¹

¹ Université Paris Cité, Inserm Research Center of Epidemiology and Statistics

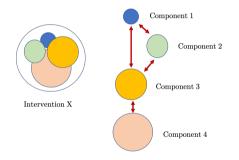

43rd Annual Conference of the International Society for Clinical Biostatistics, Newcastle upon Tyne, UK, 21-25 Aug 2022

Overview

- Defining complex health interventions
- ullet Networks of complex interventions (o network meta-analysis)
- Related work & proposed approach
- Some results
- Conclusions

What is a Complex Intervention?

Intervention consisting of multiple, potentially common and interactive components

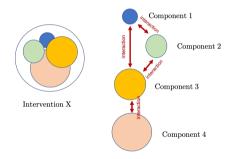


Example: behavioural change or psychological interventions (e.g. smoking cessation). More recently, digital interventions...

⇒ need to disentangle the single effects to understand overall effectiveness

What is a Complex Intervention?

Intervention consisting of multiple, potentially common and interactive components

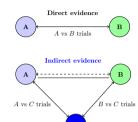


Example: behavioural change or psychological interventions (e.g. smoking cessation). More recently, digital interventions...

⇒ need to disentangle the single effects to understand overall effectiveness

What is a Complex Intervention?

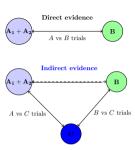
Intervention consisting of multiple, potentially common and interactive components


Example: behavioural change or psychological interventions (e.g. smoking cessation). More recently, digital interventions...

 \Rightarrow need to disentangle the single effects to understand overall effectiveness

Network meta-analysis (NMA)

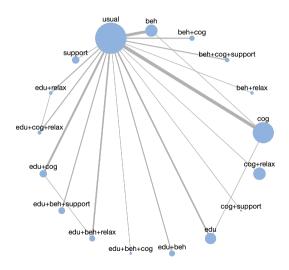
NMA: pool evidence from multiple studies to simultaneously compare many treatments, by integrating direct with indirect evidence, forming a *network of interventions*


Research question: which intervention works best?

Network meta-analysis (NMA)

NMA: pool evidence from multiple studies to simultaneously compare many treatments, by integrating direct with indirect evidence, forming a *network of interventions*

Research question: which intervention works best?


NMA of complex interventions

Research question: which components contribute the most to the effectiveness?

- so, may have complicated pathways
- there is typically larger heterogeneity

Motivating example: Coronary heart psychological interventions

Welton et al., 2009

Standard NMA model: (Bayesian) random effects model

N studies, T treatments

For each study $i: y_{i,XY}$ observed relative treatment effect (with se)

$$y_{i,XY} \sim N(\delta_{i,XY}, \sigma_{i,XY}^2)$$
$$\delta_{i,XY} \sim N(\theta_{XY}, \tau_{XY}^2)$$

- $\forall (X,Y)$ summary relative effect $\theta_{XY} = \theta_X \theta_Y$ (basic parameters)
- ullet common heterogeneity au_{XY}^2 across studies
- \triangleright Bayesian inference: need to specify priors for parameters to estimate $\theta = (\theta_1, \dots, \theta_{T-1})^T \sim P(\theta), \ \tau \sim P(\tau)$

Standard NMA models for complex interventions

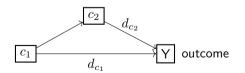
Study *i* comparing treatments X, Y where $X \ni \{c_1, c_2\}$ and $Y \ni \{c_3, c_4\}$:

Additive model:

$$\begin{split} y_i &\sim N(\delta_i, s_i^2) \\ \delta_{i,XY} &\sim N(\theta_X - \theta_Y, \tau^2) \\ \theta_X &= d_1 + d_2 \\ \theta_Y &= d_3 + d_4 \end{split} \qquad \rightarrow \text{same effect as from sum of effects alone} \end{split}$$

Full interaction model:

$$\begin{split} y_i &\sim N(\delta_i, s_i^2) \\ \delta_{i,XY} &\sim N(\theta_X - \theta_Y, \tau^2) \\ \theta_X &= d_1 + d_2 + d_{1*2} \\ \theta_Y &= d_3 + d_4 + d_{3*4} \\ \end{split} \quad \rightarrow \text{bigger/smaller than from sum of effects alone}$$


Idea: path-specific mediation

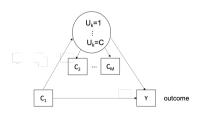
Key assumption: in studies combining two or more components there is a pathway leading from one component to the outcome via the other component(s)

Example: study comparing complex intervention $X\ni\{c_1,c_2\}$ vs placebo

 $X=c_1+c_2$: suppose that c_1 is a **strong** component and c_2 a **weak** component

effect of component c_1 is "mediated" by component c_2

$$\theta_X = d_{c_1} + \beta_1 \theta_X'$$


$$\theta_X' = d_{c_2} + \beta_2 d_{c_1}$$

Latent class mediation

Idea: unobservable groups (latent classes) of components, sharing common characteristics

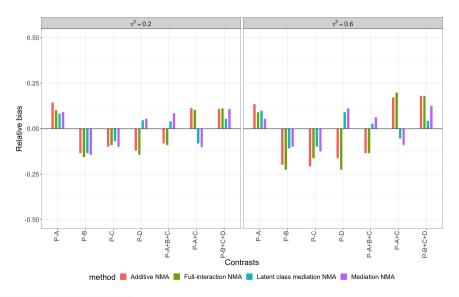
$$y_i \sim N(\delta_i, s_i^2)$$

$$\delta_i \sim N(\theta_Y - \theta_X, \tau^2)$$

$$d_k \sim N(m_{D_C}, \tau_k^2)$$

with component $k \in D_C$ with C classes to infer, and τ_k^2 within-class variance

Applications:


- ▶ Simulated networks of complex interventions
- ▶ Network of coronary heart psychological interventions

Small simulation study

Simulated data:

- 1 two-arm studies only, fairly connected networks
- five interventions (A,B,C,D,P); three combinations (A+B+C, A+C, B+C+D)
- $\tau^2 \in \{0.2, 0.6\}$
- 1,000 data sets generated
- ▶ models: mediation model, latent class mediation, additive, full interaction model
- ▶ Bayesian framework: non-informative priors, 50,000 iterations (10,000 burn-in)


Simulation results

12/14

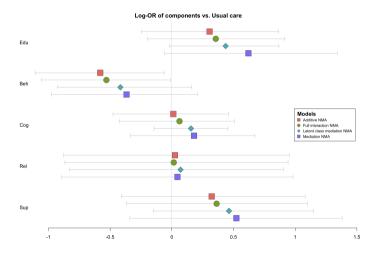
Motivating example: Coronary heart psychological interventions

Welton et al. (2009)

- 36 studies
- 17 active interventions
- outcome: all-cause mortality

components:

edu - educational


relax – relaxation

support – support beh – behavioural

ben – benaviourai

Motivating example: Coronary heart psychological interventions

Welton et al. (2009)

Final Remarks

Conclusions:

- complex interventions are hard to synthesise
- our approach tackles how components interact, accounting for heterogeneity
- results suggest pathway analysis seems suitable

Future directions:

- give structure in the priors for the relative effects of complex interventions
- IPD data would help to better explain heterogeneity

Some references

Skivington, K., Matthews, L., Simpson, S. et al. (2021) A new framework for developing and evaluating complex interventions: update of Medical Research Council guidance, emphBMJ, 374:n2061.

Welton, N. J., Caldwell, D. M., Adamopoulos, E., and Vedhara, K. (2009). Mixed treatment comparison meta-analysis of complex interventions: psychological interventions in coronary heart disease. *American Journal of Epidemiology*, 169(9):1158-1165

Hsiao, Y., Kruger, E., Lee Van Horn, M. et al. (2021) Latent Class Mediation: A Comparison of Six Approaches, Multivariate Behavioral Research, 56:4, 543-557

Rücker, G., Petropoulou, M., and Schwarzer, G. (2019). Network meta-analysis of multicomponent interventions, *Biometrical Journal*, 62: 808-821.

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101031840.