
New Edge Activity and Anomaly
Detection in a Large Computer Network

Submitted in part fulfilment of the
requirements for the degree of

Doctor of Philosophy of Imperial College London
and the

Diploma of Imperial College London
by

Silvia Metelli

Department of Mathematics,
Imperial College London

August 31, 2018



I certify that this thesis, and the research to which it refers, are the product of
my own work, and that any ideas or quotations from the work of other people,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices of the discipline.

Silvia Metelli,
March 2018



2



Copyright

The copyright of this thesis rests with the author and is made available under
a Creative Commons Attribution Non-Commercial No Derivatives licence. Re-
searchers are free to copy, distribute or transmit the thesis on the condition that
they attribute it, that they do not use it for commercial purposes and that they do
not alter, transform or build upon it. For any reuse or redistribution, researchers
must make clear to others the licence terms of this work.



Alla mia famiglia



Acknowledgements

First, I would really like to thank my supervisor, Nick Heard, for all the support
he has given me throughout my time at Imperial: I feel very fortunate. With
his patience and encouragement, Nick has guided me through this project since
the start and he has always been available whether for meetings or last-minute
clarifications with illegible, but fundamental, handwritten notes.

Then, thank you to all of the people with whom I have shared office 6M09 and
to the people I have met during my visiting experience at Los Alamos National
Laboratory. In both cases, I have been exposed to a very stimulating research
environment.

Finally, I would like to thank my closest friends, who have always been there
for me in good and difficult times, no matter the distance. Above all, thanks to
my dad, my mum and my brother for all their love.

Silvia Metelli



6



Thesis Advisor: Dr. Nicholas Heard

Abstract

Computer networks are complex systems, and dynamically monitoring their struc-
ture in search for anomalies is both a challenging and important task for cyber
security. In a computer network, new edges are connections from a host or client
to a computer or server that has not been connected to before and can provide
strong statistical evidence for detecting anomalies. However, performing mean-
ingful anomaly detection on the arrivals of new edges is non-trivial as new edges
can be indicative of both legitimate and illegitimate activity and occur with a
considerable heterogeneity between network hosts.

This thesis presents a framework aimed at modelling normal new edge activity
and performing anomaly detection in a large computer network graph. Specifically,
the main contribution consists of a Bayesian method for modelling the intensity
of new edges, simultaneously addressing the rate of occurrence of new edges and
any underlying latent structural relationship between the clients and servers in
the network. What constitutes normal behaviour for some hosts might be very
unusual for some others and so examining existing network structure is key for
accurately predicting likely future interactions. For this purpose, a notion of simi-
larity between clients and servers is developed, first under hard-thresholding with a
clustering model, and then extended to soft-thresholding in a flexible latent feature
space. Finally, the model is used to construct an anomaly detection method, which
successfully identifies some known compromised machines when demonstrated on
real computer network data.



8



Contents

Abstract 5

1 Introduction 21
1.1 Anomaly detection for cyber-security . . . . . . . . . . . . . . . . . 23

1.1.1 Cyber-attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.2 Anomaly detection approach . . . . . . . . . . . . . . . . . . 25

1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Computer Network Data 31
2.1 Imperial College NetFlow data . . . . . . . . . . . . . . . . . . . . . 32
2.2 Los Alamos National Laboratory data . . . . . . . . . . . . . . . . 33

2.2.1 LANL 2014 authentication data . . . . . . . . . . . . . . . . 33
2.2.2 LANL 2015 authentication data . . . . . . . . . . . . . . . . 35

2.3 Computer network data as marked point processes . . . . . . . . . . 39

3 Modelling the Rate of Occurrence of New Edges 43
3.1 Bayesian variable selection . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Modelling the rate of occurrence of new edges through variable se-

lection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Logistic regression model for new edges . . . . . . . . . . . . 50
3.2.2 Bayesian model averaging . . . . . . . . . . . . . . . . . . . 51

3.3 Detecting automated polling traffic . . . . . . . . . . . . . . . . . . 53
3.4 An application to Imperial College London NetFlow data . . . . . . 55

3.4.1 Network flow data . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Variable selection results . . . . . . . . . . . . . . . . . . . . 55

4 Biclustering Methods for Computer Network Data 63

9



10 Contents

4.1 Hierarchical agglomerative clustering methods . . . . . . . . . . . . 64
4.1.1 Bayesian model-based clustering . . . . . . . . . . . . . . . . 65
4.1.2 Clustering model for computer network data . . . . . . . . . 66
4.1.3 Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . 68
4.1.4 Bayesian model-based biclustering . . . . . . . . . . . . . . . 68
4.1.5 Biclustering model for computer network data . . . . . . . . 70
4.1.6 Biclustering algorithm . . . . . . . . . . . . . . . . . . . . . 72
4.1.7 An informative Beta prior . . . . . . . . . . . . . . . . . . . 72

4.2 Flat clustering methods . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Biclustering via singular value decomposition . . . . . . . . . 75
4.2.2 Spectral biclustering . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 A client model for the identity of new edges 87
5.1 Bayesian proportional hazards client model for new edges . . . . . . 88

5.1.1 Conditional Bayesian likelihood-based inference . . . . . . . 90
5.2 Sequential two-step inference . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Agglomerative clustering step . . . . . . . . . . . . . . . . . 92
5.2.2 MCMC step . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 An application to LANL computer network authentication data . . 94

6 An entire-network model for the intensity of arrival of new edges101
6.1 A Bayesian Cox model for new edges for the entire network . . . . . 102

6.1.1 Conditional likelihood-based Bayesian inference . . . . . . . 104
6.2 Cluster formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Surrogate spectral biclustering model . . . . . . . . . . . . . 106
6.3 Latent feature formulation . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 The finite latent feature case . . . . . . . . . . . . . . . . . . 108
6.3.2 The infinite latent feature case . . . . . . . . . . . . . . . . . 110

6.4 Posterior inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.1 Cluster formulation inference . . . . . . . . . . . . . . . . . 118
6.4.2 Latent feature formulation inference . . . . . . . . . . . . . . 118

6.5 An application to LANL computer network data . . . . . . . . . . . 122

7 Monitoring and Anomaly Detection 131
7.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Predictive p-values . . . . . . . . . . . . . . . . . . . . . . . 132



Contents 11

7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.1 Combining p-values for ranking clients . . . . . . . . . . . . 135
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Conclusion and Future Work 139
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 145

Appendix A Calculation of the marginal posterior distribution (4.6)157

Appendix B IBP as limit of a Beta-Bernoulli model 159
B.1 A finite feature model . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.2 Taking the infinite limit . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendix C Additional SVD results 163



12 Contents



List of Figures

1.1 Toy motivating example of the evolution of a client-server bipartite
network graph with new edges in green. . . . . . . . . . . . . . . . . 23

1.2 Lifecycle of a cyber-attack. . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 Example of traversal attack involving multiple machines. Filled

circles represent compromised hosts (Neil et al., 2013). . . . . . . . 26

2.1 The distribution of daily arrival times of Imperial College NetFlow
events, estimated to five minute bins using the data obtained over
97 days, shown on [0,24] hours (left) to demonstrate the sinusoidal
nature, and then as a circular distribution (right). . . . . . . . . . . 33

2.2 Log-log plot of out-degree distribution for users (left panel) and in-
degree distribution (right panel) for computers for LANL network
data gathered in 2014, respectively. . . . . . . . . . . . . . . . . . . 34

2.3 LANL bipartite authentication graph for the first minute of traffic.
Clients are represented as blue nodes whilst servers are in green. . . 36

2.4 Log-log plot of out-degree distribution for clients (left panel) and
in-degree distribution (right panel) for servers for LANL network
data gathered in 2015, respectively. . . . . . . . . . . . . . . . . . . 36

2.5 Graphs of compromised activity just in the red team data, divided
by week of traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Histogram for the number of new edges per each day of traffic in
the bulk data (blue bar) and just for new edges from the red team
data (red bar). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 The distribution of unfiltered client event times for IP x̃, estimated
to five minute bins using the data obtained over 97 days. . . . . . . 58

13



14 List of Figures

3.2 The number of client event observed in the network flow data for a
particular IP address on the network, IP z, which towards the end
of the collection period was eventually found to be compromised. . . 59

4.1 A cartoon describing how to transform the adjacency matrix of a
computer network graph into lower dimensional representations for
clients and servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Probability density function of beta distributions with parameters
↵ = 10, � = 1 for the high degree servers and ↵ = 1, � = 10 for the
low degree servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Simulated data matrix heatmaps, for three different matrix sizes,
where the grayscale corresponds to different cluster parameters. . . 81

4.4 Algorithm runtimes (seconds) vs. data matrix dimension. . . . . . . 84

5.1 Frequency distribution of computer degrees (log-log scale). . . . . . 95
5.2 Posterior distribution of the number of identified client clusters. . . 96
5.4 Log-likelihood vs. number of MCMC iterations, for the saturated

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Adjacency data matrix heat map with cluster configuration identi-

fied. The greyscale represents different cluster allocation. . . . . . . 99

6.1 Example of the decomposition of U . A binary matrix �U (first
panel) indicates which features are active. Elementwise multiplica-
tion of �U by Ũ of continuous values produces the representation
in the second panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 An illustration of the Indian Buffet Process for �U . Note that
N = |X|. (a) The first client samples Poisson(✓) features, which is
recorded by changing the corresponding entries of �U to one. (b)
and (c) For the x

th client, the first step is activating the previously
sampled features with probability proportional to the number of
clients who already have these features active. The next step is to
activate a Poisson(✓/x) number of new features. . . . . . . . . . . . 114

6.3 Posterior estimates coefficients under the cluster formulation, with
credible intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Clustered graph induced by applying spectral biclustering, reordered
by row clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Posterior estimates with credible interval for the cluster formulation,
where only client clusters were inferred. . . . . . . . . . . . . . . . . 126



List of Figures 15

6.6 Three sets of posterior estimates coefficients under the latent fea-
ture formulation, with credible intervals, obtained from full MCMC
( ), sparse truncated SVD with stability selection ( ), and standard
truncated SVD ( ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.7 Number of identified row and column clusters during the MCMC run.129
6.8 Scree plot for decay of singular values from the SVD of ⇤̂, in the

interval [0, 30], with the characteristic ‘elbow’ corresponding to the
largest difference in magnitude. . . . . . . . . . . . . . . . . . . . . 130

6.9 Number of active latent features during the MCMC run. . . . . . . 130

7.1 Empirical cumulative distribution of observed p-values under the
cluster model (left) and the latent feature model (right), against
the Uniform(0, 1) cumulative distribution function. . . . . . . . . . 134

7.2 Log-likelihood vs. number of MCMC iterations, for the cluster for-
mulation (top), and for the latent formulation (bottom). . . . . . . 135

7.3 ROC curves for each client, for each sample repetition, shown on
both linear (left) and log scales (right). . . . . . . . . . . . . . . . . 137

7.4 Observed p-values ( ) over time and the corresponding control chart
( ) for the two identified infected clients and two of uninfected
clients in the red bulk data. Top left: C17693; Top right: C19932;
Bottom left: C349; Bottom right: C586. Control chart thresholds
at the 1% ( ) and 0.1% ( ) significance levels are shown for
each client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1 A graph showing connections from user domains to server computers
involving red team activity. . . . . . . . . . . . . . . . . . . . . . . 142

C.1 Scree plot for truncated-SVD operated directly on the adjacency
matrix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.2 Scree plots for truncated-SVD operated on ⇤̂, from Sample 2 to
Sample 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



16 List of Figures



List of Tables

2.1 Network flow data fields. . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 2014 LANL authentication data fields. . . . . . . . . . . . . . . . . 34
2.3 2015 LANL authentication data fields. . . . . . . . . . . . . . . . . 35
2.4 Numbers of events and unique server computers connected to by

four client computers in the LANL authentication data identified
as compromised both in the complete data and just in the red team. 37

3.1 Dummy variables included in the analysis. . . . . . . . . . . . . . . 51
3.2 Coefficient estimates from logistic regression for IP x̃. . . . . . . . . 56
3.3 Coefficient estimates from logistic regression for IP x̃ with polling

data removed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Coefficient estimates from logistic regression for IP z before infection. 60
3.5 Coefficient estimates from logistic regression for IP z after infection. 61
3.6 Bayes factors for the best three models against the null model, for

the four different subsets of data analysed. . . . . . . . . . . . . . . 62

4.1 Quality measures for each algorithm over simulated data, for differ-
ent data matrix sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Summary statistics for the subset of data analysed. . . . . . . . . . 95
5.2 Posterior model coefficient estimates with credible intervals. . . . . 96
5.3 Likelihood ratios for the different models. . . . . . . . . . . . . . . . 98

6.1 Likelihood ratios for the three different model settings. . . . . . . . 129

7.1 Out-of-training log likelihood under both formulations. All values
are averages over the test pairs. . . . . . . . . . . . . . . . . . . . . 134

17



18 List of Tables



List of Algorithms

1 Standard Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . 49
2 Model-based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 69
3 Model-based Iterative Biclustering . . . . . . . . . . . . . . . . . . . 73
4 SSVD with stability selection . . . . . . . . . . . . . . . . . . . . . 120

19



20 List of Algorithms



Chapter 1
Introduction

The deployment of statistical methodology for cyber-security research is a rel-
atively new paradigm which has been attracting attention over the last decade
due to the increasing cyber threat faced by government, industry, academia, the
military and society as a whole. This has led to the routine bulk collection of
high-volumes of traffic data, which has in turn fostered the development of novel
statistical anomaly detection methods to quickly analyse those data, possibly in
real time. However, computer network traffic data are complex and several chal-
lenges still hinder the employment of anomaly-based methods for large computer
networks, such as computational speed and scalability. Statistical anomaly detec-
tion searches for outlying behaviour in a network with respect to a putative normal
background. This approach aims at building a realistic probability model for the
normal evolution of the network system and then look for any abnormal deviation
(Neil et al., 2013; Turcotte et al., 2014), potentially providing a robust next layer
of cyber-security defence. These tools are indeed intended to be complementary
to existing signature-based enterprise network defence systems, which can only
monitor for known security violations.

In statistical anomaly detection, it is therefore paramount to have reliable and
robust models for learning the normal network background. Unfortunately, in
cyber security applications, it is often very complex to determine appropriately

21



22 Chapter 1. Introduction

such a model. In addition, there is a considerable imbalance between the amount
of available data for learning normal behaviour and data recording intrusions,
which are very rare. As a result, the most of the detection power will come from
the ability of building sophisticated models of normal behaviour, rather than from
modelling intrusion data. In line with these considerations, the present thesis
is mostly concerned with modelling normal network behaviour. Specifically, the
work focuses on a specific aspect occurring in the evolution of a computer network
system which has not been previously fully analysed, namely the formation of new
edges over time. Arrivals of new edges in a computer network represent connections
between a client and server pair not previously observed, and might suggest the
presence of intruders or malicious implants.

The information about a computer network can be collected as an online stream
of connection events, which will be summarised throughout this thesis as a series
of time-varying directed graphs, denoted {Gt}. An intruder infecting a node at
time t in the network does not typically have information about which nodes in
Gt that node usually connects to. Therefore the intruder, despite not wishing to
stand out in the network traffic, may be more likely to initiate new connections
between hosts which have never communicated before. Such activity can provide
a valuable signal for detecting the presence of the intruder. However, accurately
capturing and accumulating evidence of new edge formation is challenging because
new connections occur at a relatively high frequency for legitimate reasons, and
with very different characteristics between network hosts. In particular, some
hosts – for instance a new server – will have a high activity rate both of indegree
and outdegree connections as soon as they come online, while some others – for
example new single-user machines – will probably tend to have a lower activity
rate at which they make new edges. Figure 1.1 provides a simple illustration of the
evolution of a bipartite computer network graph with the purpose of illustrating
the mechanism of new edge formation. Despite the system being too small to
be representative of large-scale systems, the idea here is that Client 3 might be
responsible of anomalous behaviour, as it makes a high number of new edges in a
small window of time.



1.1. Anomaly detection for cyber-security 23

State at time t = 1

Clients

Client 1

Client 2

Servers
S1

S2

State at time t = 2

Clients

Client 1

Client 2

Client 3

Servers
S1

S2

S3

· · · · · ·

· · · · · ·

State at time t = n

Clients

Client 1

Client 2

Client 3

Servers
S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Figure 1.1: Toy motivating example of the evolution of a client-server bipartite
network graph with new edges in green.

1.1 Anomaly detection for cyber-security

Anomalous computer network behaviour can be caused by different types of cyber-
attacks, and examples include denial of service (DoS) attacks to cause disruption
or further spread malware, or intruders seeking to escalate privileges by travers-
ing through the host network. Although all modern networks are provided with
security systems which try to prevent and monitor unauthorised access, these sys-
tems still remain permeable and most networks are arguably already compromised
to some degree. This implies that some intruders will at some point succeed in
gaining access through the network, capturing valuable data or consolidating their
presence in the network for future malicious operations. In an attempt to better
contextualise the general motivation for the application presented in this thesis, in
the next subsection we give a brief description of the different stages of a modern,
typically multi-stage, cyber-attack.



24 Chapter 1. Introduction

1.1.1 Cyber-attacks

Sophisticated attackers, typified by advanced persistent threat (Friedberg et al.,
2015), are now able to easily circumvent perimeter based defences and to establish a
persistent presence in the system. Furthermore, most of modern cyber-attacks are
multi-stage by their nature and so detecting malicious activity, especially at early
stages, is challenging. The typical stages involved in a breach can be described as
a lifecycle, as illustrated in Figure 1.2. The first stage (Reconnaissance stage) con-
sists in identifying potential targets and determining the attack methodology. In
the second stage (Penetration stage), the attacker successfully executes malicious
code on one or more systems, bypassing perimeter defences and gaining access to
the internal network. Subsequently, the attacker gains a foothold on the network
and establishes a persistent control, in order to have long-term, remote access over
the victim’s computer (Gaining foothold stage). The attempts to gain wider ac-
cess to the network are then generally carried out via a “pass-the-hash" technique
or by exploiting a vulnerable piece of software (Escalate Privileges stage). The
next step is then to conduct internal exploration of the infected environment (In-
ternal Reconnaissance stage) and subsequently to laterally compromise additional
systems, using the access gained from the previous steps. By installing multiple
remote entry points, the attacker ensures prolonged presence and control within
the environment from outside (Maintain Presence stage). Finally, the attacker ex-
ecutes exfiltration, corruption, and disruption of sensitive data, reaching the end
point of cyber exploitation life-cycle (Mission Complete stage).

As the final stage involves data exfiltration and system disruption, it is this
stage the one responsible for the greatest damage. Thus, the ability to detect the
attack before this final stage should be paramount to all modern anomaly detection
techniques and is key to prevent large-scale impact.

Possible attack techniques which might be relevant to the analysis of new edge
formation primarily include early activities directed to download some malicious
payload, such as ransomware, and exploitation of a host computer as part of a
botnet, e.g. taking part in a DDoS attack.



1.1. Anomaly detection for cyber-security 25

Reconnaissance Penetration Gain a
Foothold

Escalate
Privileges

Internal Re-
connaissance

Maintain
Presence Exfiltration Mission Complete

Early detection

Figure 1.2: Lifecycle of a cyber-attack.

1.1.2 Anomaly detection approach

The two main approaches to intrusion detection on a computer network are signature-
based methods and anomaly-based detection methods. Signature-based systems
search for evidence of attacks based on signatures accumulated from previous at-
tack vectors and stored on a so-called signature database (Cahill et al., 2002).
Signature-based methods are often strong, resulting in very low levels of false
positive detections. However, this approach requires the signature to be known
beforehand, and is therefore less well-suited to detecting new anomalies. In con-
trast, anomaly detection methods, as already mentioned, aim at building a model
reflecting the normal behaviour of the system and thus no prior knowledge about
the characteristics of potential future attacks is required, allowing us to discover
day-zero attacks, i.e. attacks which were never observed before (Patcha and Park,
2007).

A general overview of anomaly-based methods is provided by Chandola et al.
(2009), which outlines a large number of approaches developed in literature and the
challenges associated with their deployment. Heuristic measures, such as the min-
imum description length heuristic (Rissanen, 1989), and spectral graph techniques
have been first attempts in detecting anomalous subsets of network data (Noble
and Cook, 2003; Idé and Kashima, 2004). A considerable amount of research has
then focused on scan statistics, which was established for online network intrusion
detection for the first time by Priebe et al. (2005). The authors use a star shape to
define a local area and then scan the data over those local windows, calculating a
locality statistic for some graph invariant in each window. The locality statistic is
calculated by testing the null hypothesis of normal behaviour in each local window
and the scan statistic is defined as the maximum of the locality statistic across



26 Chapter 1. Introduction

all local areas. Park et al. (2013) then extended the theory of scan statistics on
graphs by considering a fusion of graph invariants. Other notable work in this
direction include Horn and Willett (2011); Sharpnack et al. (2012); Valko (2011).
Subsequently, Neil et al. (2013) take a scan statistic approach to perform anomaly
detection in small local areas of the graph, by looking at anomalous edges which
form a path, i.e. a sequence of edges in which the destination node of the current
edge is the source node for the next edge. By means of these paths, they seek to
identify an intruder who is traversing the network. Figure 1.3 shows an example
of traversal attack.

Step 1 Step 2 Step 3

· · ·

Figure 1.3: Example of traversal attack involving multiple machines. Filled circles
represent compromised hosts (Neil et al., 2013).

Anomaly detection has also been studied in the field of communication net-
works, and relevant work include Heard et al. (2010) and Heard and Turcotte
(2014), where discrete time models are used to model communications along edges
in the network. A two-stage approach is proposed by the authors to first iden-
tify potentially anomalous nodes and subsequently build an anomalous subgraph
induced by these nodes. The subgraph represents a much reduced portion of the
initial network, thus allowing standard graph-theoretic tools to be deployed.

Despite the recent interest and efforts, statistical anomaly detection approach
to cyber-security still poses significant statistical challenges, which are limiting
the widespread deployment of these methods. One is modelling a complex data
structure, with highly heterogeneous data. Then, a number of anomaly detection
problems arise, for example it is difficult to incorporate model uncertainty while
also combining anomalies through time and across the network without resulting
in a high number of false positive detections. Finally, the high volume of traffic
analysed raises significant computational challenges, making scalable and paral-



1.2. Outline of this thesis 27

lelisable approaches of fundamental importance.

1.2 Outline of this thesis

The main contribution of this thesis is to propose a robust statistical model for
the normal formation of new edges and subsequently to construct an anomaly
detection method based on such a model. Specifically, we propose a framework
for modelling the arrivals of new edges, based on two main components. First, we
focus on understanding the rate at which individual client hosts form new edges.
Second and more challenging, we focus on predicting the identity of new edges
formed by each client. What constitutes a normal connection for some hosts could
be a very unusual connection for others and in the absence of further information
about the structure of the network, the second consideration requires extracting
underlying latent structural relationship between the clients and servers in the
network. Towards this end, we develop a notion of similarity of network hosts,
such that similar clients may connect to similar servers. Similarity is considered
under hard-thresholding with a clustering model, or soft-thresholding in a latent
feature space.

Chapter 3-6 address modelling normal network behaviour, first proposing dis-
tinct models for the rate of occurrence and the identity of the new edges; and
then including both aspects in a single, more complete model. Chapter 7 is finally
devoted to performing anomaly-detection, based on the model learned from the
previous chapters. The structure of this thesis is as follows.

• Chapter 2 gives a general introduction to computer network data and de-
scribes the three motivating data sets used to perform the analyses. The
first data set consists of network flow data gathered from the Imperial Col-
lege London internal domain, while the second and the third ones consist of
authentication events from the Los Alamos National Laboratory enterprise
network. It also presents the mathematical formulation that will be used in
all the following chapters to describe various aspects of such data.



28 Chapter 1. Introduction

• Chapter 3 introduces some background material that will be needed through-
out this thesis and then presents a logistic model for the rate of occurrence
of new edges. Bayesian variable selection is deployed for identifying the
most influential covariates to be included in the model, thus avoiding model
redundancy and overfitting. To improve the data quality, a technique for
removing automated polling traffic is also presented. The method is then
demonstrated on Imperial College London network flow data, and results for
filtered and unfiltered data are compared. Parts of this chapter can also be
found in Metelli and Heard (2014).

• Chapter 4 presents several methods for clustering and biclustering hosts in
a large computer network. First, hierarchical clustering approaches such as
Bayesian agglomerative model-based clustering and an extension to agglom-
erative model-based biclustering are presented. Second, two flat clustering
approaches, namely singular value decomposition and spectral clustering, are
introduced. A simulation study is then performed to compare the effective-
ness of each method presented. Some of the clustering methods presented in
this chapter will prove useful in Chapter 5 and Chapter 6.

• Chapter 5 proposes a Bayesian client model aimed at predicting new edges
in a large computer network while simultaneously identifying clustered struc-
ture. As a first step of the analysis, initial reliable cluster configurations are
sequentially inferred through model-based agglomerative clustering and then
jointly updated with model parameters via a Markov Chain Monte Carlo
(MCMC) sampler. The method is then applied to one of the two authen-
tication data sets gathered from Los Alamos National Laboratory internal
network. Parts of this chapter can also be found in Metelli and Heard (2016).

• Chapter 6 proposes a framework for modelling the intensity of arrival of
new edges, which addresses both the rates at which the client forms new
edges and any underlying latent structural relationship between the clients
and servers in the network. Two formulations will be proposed for inferring
latent structure, first with a clustering model under hard-thresholding and
then under soft-thresholding in a flexible latent feature space. Posterior



1.2. Outline of this thesis 29

inference under both frameworks is also described. Parts of this chapter are
taken from Metelli and Heard (2018).

• Chapter 7 finally shows how the model can be used to construct an anomaly
detection method. This method, demonstrated on Los Alamos National
Laboratory authentication data, was able to detect some known red team
compromised machines.

• Chapter 8 summarises the results presented in the thesis and discusses
possible future work. Derivations for some of the equations used in the text
and other supplementary materials are provided in the appendices.



30 Chapter 1. Introduction



Chapter 2
Computer Network Data

Computer networks are dynamic communication networks which allow computers
to exchange data. Such data are mainly collected in the form of network flow events
or as authentication events. Unfortunately, the number of released data sets from
enterprise computer networks is still quite small, thus limiting the development of
relevant research in the cyber security community. Many organisations are still
reluctant to publicly release data, mainly due to security and privacy issues. In
addition, in many cases the data collected lack accuracy or the volumes of collection
is not sufficient for providing valuable cyber research.

The motivating data sets used in this thesis are obtained from two different
available sources, namely Imperial College London and Los Alamos National Lab-
oratory (LANL) internal networks. Imperial College London data are provided
by the Information and Communication Technologies department in private form,
whilst Los Alamos National Laboratory (LANL) has recently released data for pub-
lic use (Kent, 2014, 2015a). Each data set is briefly described below. Specifically,
Section 2.1 describes network flow data from Imperial College London internal do-
main, while Section 2.2 describes two different authentication data sets gathered
from LANL internal network. Finally, Section 2.3 introduces the mathematical
formulation used throughout the thesis to encode such data.

31



32 Chapter 2. Computer Network Data

2.1 Imperial College NetFlow data

NetFlow data are aggregated summaries of the traffic passing around a computer
network from one internet protocol (IP) address to another, over a period of time.
A common format is Cisco’s NetFlow protocol, which records information about
IP addresses of the machines, both the source and the destination ports, the time
of the connection and the number of packets and bytes transferred. As an ex-
ample, the server port can provide rich information about the type of service
being used: for example, ports 80 (HTTP) and 443 (HTTPS) are associated with
web-browsing, and port 25 with email. A typical data set contains the following
information:

Field Name Description
Time The start time of the event in epoch time format
Duration The duration of the event (sec.)
SrcIP The IP source address that likely initiated the event
DstIP The IP destination address
Protocol The protocol number
SrcPort The port used by the SrcIP
DstPort The port used by the DstIP
Packets The number of packets of data exchanged
Bytes The number of bytes of data exchanged

Table 2.1: Network flow data fields.

The Imperial College London network flow data are obtained from router level
flow records gathered from one of the main networks. Imperial College London
has a wide range of 345,098 IP addresses, in which approximately one seventh
are generally active. The average level of traffic flow on the network equates to
approximately 1.3 billion network flow records per day. Figure 2.1 shows the global
daily pattern of the network, using data collected for 97 days between November
2013 and February 2014. As would be expected, the distribution of the time of
day of the NetFlow events shows a sinusoidal diurnal scheme, where the majority
of traffic happens in between 9am and 6pm.

This data set will be used to perform analyses in Chapter 3, where particular
attention will be given to IP (Internet Protocol) source and destination addresses,



2.2. Los Alamos National Laboratory data 33

protocol, and source and destination port numbers for User Datagram Protocol
(UDP) or Transmission Control Protocol (TCP). Both UDP and TCP are core
members of the Internet protocol suite and their aim is to handle data communi-
cations between terminals in the Internet.

0 2 4 6 8 10 12 14 16 18 20 22 24

2

2.5

3

3.5

4

4.5

5

·10�3

Time of day (hours)

P
ro

ba
bi

lit
y

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

Figure 2.1: The distribution of daily arrival times of Imperial College NetFlow
events, estimated to five minute bins using the data obtained over 97 days, shown
on [0,24] hours (left) to demonstrate the sinusoidal nature, and then as a circular
distribution (right).

2.2 Los Alamos National Laboratory data

Two data sets of authentication events from the Los Alamos National Laboratory
(LANL) corporate, internal computer network are described below. The first data
set encompasses authentication events collected in 2014 while the second one is
part of comprehensive, multi-source event data gathered in 2015. The former will
be used to demonstrate the method presented in Chapter 5, while the latter will
be used in Chapter 6.

2.2.1 LANL 2014 authentication data

This data set consists of authentication data (Kent, 2014) from the enterprise
computer network at LANL, representing 9 months of contiguous authentication



34 Chapter 2. Computer Network Data

activity. More specifically, the data set contains 708,304,516 time-ordered, suc-
cessful user to computer authentication events among 11,362 users and 22,284
computers in the network. The timing of each authentication pair of anonymised
user and anonymised computer is recorded at one second resolution. Example
records for the authentication data are as follows:

Field Name Description
Time Time of the authentication event (1 sec. resolution)
Usr Anonymised user ID
Comp Anonymised computer ID

Table 2.2: 2014 LANL authentication data fields.

Figure 2.2 shows the distributions of out-degrees for users and in-degrees for com-
puters in the network. The outdegree for users is measured by the number of unique
computers receiving authenticated connections, while the indegree for computers
is measured by the number of unique users making authenticated connections. It
can be noted that both the degree distributions approximately follow a power law.

1 10 100 1,000 10,000
1

10

100

1,000

Degree

Fr
eq

ue
nc

y

1 10 100 1,000 10,000
1

10

100

1,000

Degree

Figure 2.2: Log-log plot of out-degree distribution for users (left panel) and in-
degree distribution (right panel) for computers for LANL network data gathered
in 2014, respectively.



2.2. Los Alamos National Laboratory data 35

2.2.2 LANL 2015 authentication data

This more recent data set represents 58 consecutive days of de-identified authen-
tication event data collected from the enterprise computer network at LANL
(Kent, 2015a,b). The data are collected from individual Windows-based desk-
top computers, servers, and Active Directory servers. In total, the data set
presents 336,806,387 time-ordered client to server authentication events among
16,230 clients and 15,417 servers. The timing of each authentication pair of
anonymised client and anonymised server is again recorded at one second reso-
lution. As an example, the different fields contained in this data set are reported
in Table 2.3.

Field Name Description
Time Time of the authentication event (1 sec. resolution)
SrcUser@Domain Anonymised user initiating the authentication event
DstUSer@Domain Anonymised user that the authentication event is mapping to
SrcComputer Anonymised user ID
DstComputer Anonymised computer ID
AuthType Type of authentication occurring (e.g. Negotiate, Kerberos etc.)
LogonType Description of the type of logon (e.g. Batch, System service etc.)
Orientation How the authentication event is being used
Status Status of the authentication request (Success or Failure)

Table 2.3: 2015 LANL authentication data fields.

To illustrate, Figure 2.3 shows a graph of connections between clients and
servers on the LANL data, observed over the first minute of traffic. It can be
noted that there are a few high-degree clients responsible for the majority of the
traffic. The distributions of out-degrees for clients and in-degrees for servers in the
network in shown in Figure 2.2. As before, the outdegree for clients is measured
by the number of unique server computers receiving authenticated connections,
while the indegree for servers is measured by the number of unique clients making
authenticated connections. Again, both degree distributions follow an approximate
power law, although we can observe that the modal outdegree is higher than the
modal indegree, since the majority of servers have a very small population of
connecting clients.

This data set is particularly interesting as it contains a red team penetration



36 Chapter 2. Computer Network Data

Figure 2.3: LANL bipartite authentication graph for the first minute of traffic.
Clients are represented as blue nodes whilst servers are in green.

1 10 100 1,000 10,000
1

10

100

1,000

Degree

Fr
eq

ue
nc

y

1 10 100 1,000 10,000
1

10

100

1,000

Degree

Figure 2.4: Log-log plot of out-degree distribution for clients (left panel) and in-
degree distribution (right panel) for servers for LANL network data gathered in
2015, respectively.

testing operation, which occurred during the period of data collection. A subset
of the data have been labelled as representing known compromise events, thus
providing an ideal target for testing anomaly-detection methods.

The authentication event data labelled as red team events account for 48,079
of the total records in the bulk data, and Table 2.4 shows how these event data



2.2. Los Alamos National Laboratory data 37

Compromised client Frequency Unique server computers
Red Team Total Red Team Total

C17693 701 1717 296 534
C18025 3 101 1 29
C19932 19 10,008 8 30
C22409 26 36,253 3 31

Table 2.4: Numbers of events and unique server computers connected to by four
client computers in the LANL authentication data identified as compromised both
in the complete data and just in the red team.

are distributed across those labelled machines, while Figure 2.5 shows four graphs
of red team activity- one for each week of traffic- are reported.

As we will be restricting our interest to the formation of new edges over time,
Figure 2.6 shows a bar plot of the rate of occurrence of new edges for each day
of traffic, both for the bulk data and just for red team events. The total number
of new edges in the bulk data is 419,744, representing 8,38% of the total traffic.
Specifically, there are 134,688 new edges created during the first day, corresponding
to approximately 32% of the total number of new edges in the data set. This is
an expected behaviour, as at the beginning the clients tend to establish many new
connections, which will later correspond to their regular traffic. The compromised
clients in the red team data do not conform to this normal new edge behaviour:
from the 29 days of traffic, the largest number of compromised new edges is formed
during days 8 and 12.



38 Chapter 2. Computer Network Data

C17693

C18025

C19932

Week 1

C19932

C17693

C22409

Week 2

C17693

C19932

Week 3

C17693

C19932

Week 4

Figure 2.5: Graphs of compromised activity just in the red team data, divided by
week of traffic.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·105

Fr
eq

ue
nc

y

Bulk Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

100

350

1 2 5 6 7 8 9 11 12 13 14 15 21 26 33 34 36 49

1614 20 8 12

313

20 1

117
493113 1 2 3 2 1 1

Day

Red Team Data

Figure 2.6: Histogram for the number of new edges per each day of traffic in the
bulk data (blue bar) and just for new edges from the red team data (red bar).



2.3. Computer network data as marked point processes 39

2.3 Computer network data as marked point pro-

cesses

In this section we provide a mathematical formulation for the aspects of computer
network data which we will need throughout the thesis. In particular, we give
a definition of a time-evolving computer network graph and we define the main
variables that will be used for the rest of this work.

The information about the traffic observed on the computer network will be
encoded as a directed graph of connections from a set of clients X to a set of
servers Y , which can be naturally represented as a time-varying bipartite graph.
Nodes in X and Y will represent active computers generating communication and
edge activity will be seen as a point process of counts of connections over the
time interval of interest. The sets X and Y may refer to the same collection
of computers or IP addresses, but for the purposes of this thesis they will be
considered as separate entities. Assuming fixed, but potentially very large sets of
client nodes X and server nodes Y , {Gt} will be a time-increasing set of directed
edges in X ⇥ Y , such that an edge (x, y) exists from x 2 X to y 2 Y in Gt if and
only if client x has connected to server y by time t.

Specifically, we express the arrivals of connections between computers in the
network as a marked point process (T , E) = ((Tn)n�1, (En)n�1) where each random
variable Tn is a positive real-valued event time and En is a corresponding (X⇥Y )-
valued (client, server) mark. Let 0  t1  t2  . . . be the realised sequence of
event times and let en = (xn, yn) 2 X ⇥ Y be the corresponding mark for the nth
event.

From (T , E) we can define a continuous-time, left-continuous stochastic series
of random graphs {Gt|t � 0} from the set of network graph edges observed. This
can be expressed as

Gt = {(x, y)|(x, y) 2 X ⇥ Y,Nx,y(t) > 0}, (2.1)



40 Chapter 2. Computer Network Data

where
Nx,y(t) =

X

n�1

[0,t)(tn) (x,y)(en) (2.2)

is the left-continuous counting process of connections from client x to server y

prior to time t. Note that in this formulation the edges observed at time t are not
included in Gt. The corresponding counting processes of connections from client
x or to server y prior to time t can be achieved respectively summing (2.2) over
X or Y ,

Nx,·(t) =
X

y2Y

Nx,y(t), N·,y(t) =
X

x2X

Nx,y(t). (2.3)

For all the remaining chapters, we will be mainly interested in the following
aspects of the dynamic graph Gt. First, we will be interested in capturing bursts
of formation of new edges and second, we will be interested in incorporating the
popularity of different client and server machines. The latter will be measured by
the time-varying outdegrees of clients and indegrees of servers; while for the former
we construct two variables which indicate whether the last connection made by
each client x was new, or whether the last m connections were all new. Below we
provide the mathematical definition of such variables.

For each client x, let (T x
,Y

x) = ((T x
n )n�1, (Y x

n )n�1) be the subprocess for which
the client mark is x, corresponding to those indices n for which x(xn) = 1. From
(T x

,Y
x) we can first define a binary variable for the presence of a new edge

u
x
n = (X⇥Y )\Gtxn

{(x, yx
n)} (2.4)

such that ux
n = 1 if and only if the nth connection from client x is new. Then, we

can define the indicator variables for new edge ‘burstiness’ as

Ix,1(t) =

8
<

:
1, Nx,·(t) = 0,

u
x
Nx,·(t)

, Nx,·(t) � 1;
(2.5)



2.3. Computer network data as marked point processes 41

and then recursively, for m � 2,

Ix,m(t) =

8
<

:
Ix,m�1(t), Nx,·(t) < m,

u
x
Nx,·(t)�1Ix,m(t), Nx,·(t) � m.

(2.6)

The binary variable Ix,m(t) will take value 1 if the last m connections made by
client x were each new, and therefore represent a burst of new edge formation of
length m.

Finally, from (T , E) we define the subprocess (T 0
, E

0) = ((T 0
n)n�1, (E 0

n)n�1)

of unique new edges observed in (T , E), corresponding to those indices n for
which Gtn

{(xn, yn)} = 0. From the realised sequence of unique edges (e0n)n�1 =

((x0
n, y

0
n))n�1, the time-varying outdegrees of clients is simply given by

N
+
x (t) =

X

n�1

[0,t)(t
0
n) x(x

0
n), (2.7)

which measures the number of unique servers to which client x connected to before
time t. Similarly, the time-varying indegrees of servers is

N
�
y (t) =

X

n�1

[0,t)(t
0
n) y(y

0
n), (2.8)

which measures the number of unique clients to which server y has received con-
nections from, before time t. The formulation provided here refers to indegrees
of clients and outdegrees of servers across the entire network graph; in Chapter 5
and 6 we will also consider the special case in which indegrees and outdegrees are
measured just inside subsets (clusters) of similar clients or servers in the graph.
In this case, the outdegrees of clients (2.7) and indegrees of servers (2.8) can be
generalised by considering the degree of a node in the bipartite graph restricted
to subsets of clients or servers. Respectively for a subset of clients C ✓ X and a



42 Chapter 2. Computer Network Data

subset of servers S ✓ Y , we can define

N
+
x|S(t) =

X

n�1

[0,t)(t
0
n) x(x

0
n) S(y

0
n) (2.9)

as the number of servers in S connected to by client x, prior to time t, and

N
�
y|C(t) =

X

n�1

[0,t)(t
0
n) y(y

0
n) C(x

0
n) (2.10)

as the number of clients in C which have connected to server y prior to time t.



Chapter 3
Modelling the Rate of Occurrence of New

Edges

As discussed in the introduction, a compromised computer node tends to form
a large number of new client edges in the network graph, connecting to server
computers which have not previously been visited and so anomalous occurrence
of new edges can signify malicious presence in the network. However, study of
computer network flow data suggests new edges are also regularly formed by benign
hosts, and often in bursts. Thus, when building a robust model for new edge
formation, a first important component consists of understanding the rates at
which new edges are formed by each host in the network. The formation of new
edges is not a stationary process, and the rate at which new edges are formed
should be viewed as time-varying: initially, many of the connections of the client
will be new as its regular connections are first established, whilst in the longer
term the rate of new edges will necessarily reduce, but will still be different or far
from zero (see Figure 2.6).

In this chapter, Bayesian Model Averaging (BMA) (Raftery et al., 1997) is
applied to a logistic regression model for new edge formation, with the purpose
of performing variable selection. Network traffic data are complex, and so the
potential number of variables which might be included in such a statistical model

43



44 Chapter 3. Modelling the Rate of Occurrence of New Edges

can be large. Without proper treatment, this would lead to overfitting of models
with poor predictive performance. Part of the work presented in this chapter can
also be found in Metelli and Heard (2014).

Network flow data as described in Section 2.1 will be used to demonstrate the
method presented. Here, the stream of network flow events from, say, a particular
client IP address is viewed as a binary sequence, where the next value in the
sequence is 1 if the client connects to a server IP address which has not previously
been observed; otherwise, the next value in the sequence is 0. Specifically, Bayesian
variable selection is used on NetFlow data from two IP addresses from the Imperial
College London domain. After selecting the subset of regressors with highest
posterior probability of inclusion, regression coefficient estimates are provided to
understand which variables most affect the probability of observing a new edge.

A procedure to detect automatic periodic connections is also presented and
variable selection is then repeated on the same data sets after removing auto-
mated polling behaviour, for the purpose of comparison. Normal connectivity in a
computer network is generally a mixture of automated and human-driven traffic,
and so understanding and separating the two is important when proposing models
of normal behaviour of network hosts.

The remainder of the chapter is organised as follows: Section 3.1 presents the
BMA technique and provides some background on Bayesian MCMC inference. The
logistic regression model used to perform variable selection with BMA is presented
in Section 3.2, while 3.3 describes the approach used to detect and filter out polling
behaviour from the data. Finally, the main results of the application to Imperial
College London’s computer network are presented in Section 3.4, and results with
and without the presence of polling behaviour are compared.

3.1 Bayesian variable selection

When the number of variables is very large, many of them could be unrelated to
the feature of interest, for example computer network flow data (see Table 2.1)



3.1. Bayesian variable selection 45

contain a large number of fields and some of them, for instance some ports or
protocols, may be unrelated to the presence of a new edge. Variable selection
identifies a subset of the data related to the feature of interest, which can thus
be used as a surrogate for the full set of variables. In the context of new edge
formation in a computer network, this involves identifying a subset of variables
highly connected to the presence of a new edge. In this way, models and predic-
tions can be based only on the variables included in this subset without loss of
quality. Variable selection is a special case of the wider problem of model selection,
since each subset of variables can be regarded as a different regression model. A
variety of algorithms for searching the model space and selection criteria for choos-
ing between competing models have been proposed over the years (Miller, 2002;
Broman and Speed, 2002; Sillanpää and Corander, 2002) both under a frequentist
and Bayesian approach. In the Bayesian framework, rather than searching for the
single optimal model, the posterior probability of all models within the considered
class of models is estimated. Several techniques have been developed (Sillanpää
et al., 2004; Meuwissen and Goddard, 2004; Xu, 2003), including the seminal pa-
per on Bayesian model averaging by Raftery et al. (1997), which is the approach
considered here.

Bayesian model averaging (BMA) provides a simple and useful way to account
for the uncertainty associated with the model selection process. This approach
tackles the problem of selection by estimating models for all possible combinations
of variables and then constructing a weighted average over the model space. Con-
sidering p possible variables, there are K = 2p possible combinations of different
models, without considering the interaction effects between variables.

Let M = (M1, . . . ,MK) be a set of possible models and ✓ a quantity of interest,
such as a model parameter. The posterior distribution of ✓ given the observed data
D, is:

P(✓|D) =
KX

k=1

P(✓|D,Mk)P(Mk|D). (3.1)

This can be viewed as a weighted average posterior distribution for ✓ under each
of the models considered, where the weights are the corresponding posterior model



46 Chapter 3. Modelling the Rate of Occurrence of New Edges

probabilities. In a Bayesian approach, such posterior model probabilities are cal-
culated by applying the Bayes theorem as follows:

P(Mk|D) =
P(D|Mk)P(Mk)PK
l=1 P(D|Ml)P(Ml)

, (3.2)

where
P(D|Mk) =

Z
P(D|✓k,Mk)P(✓k|Mk) d✓k (3.3)

is the integrated, marginal likelihood of model Mk, ✓k is the vector of parameters
of model Mk, P(✓k|Mk) is the prior density of ✓k under model Mk, P(D|✓k,Mk) is
the model likelihood and P(Mk) is the prior probability that Mk is the true model.
Note that all these probabilities are conditional on the model space M. In Bayes
rule, the marginal likelihood in the denominator normalises the posterior density,
such that it integrates to one and is a correctly defined probability distribution.
Then, the Bayesian model averaged estimate of the parameter ✓ is

✓̂BMA =
KX

k=1

✓̂kP(Mk|D), (3.4)

where ✓̂k is the posterior mean for model k. Variances of these estimates as well as
estimates for other quantities of interest are available from Hoeting et al. (1999)
and Viallefont et al. (2001).

The BMA approach has proved to have, on average, better predictive perfor-
mance than any single model that could reasonably have been selected (Raftery
et al., 1995). However, challenges can arise from the evaluation of the marginal
likelihoods P(D|Mk) which do not typically have closed form, and the specifica-
tion of suitable prior model probabilities P(Mk) (see Friel and Wyse (2012)). The
model space exploration is generally performed following the Occam’s principle of
scientific parsimony (MacKay, 1991) or via Markov chain Monte Carlo (MCMC)
methods (Chipman et al., 1998; Hoeting et al., 1999). Occam’s principle will be
discussed in Section 3.2, while some background material on MCMC inference is
provided below. MCMC methods will be extensively used to perform model infer-



3.1. Bayesian variable selection 47

ence throughout this thesis and so some fundamental MCMC concepts are hereby
reviewed.

3.1.1 Bayesian inference

When fitting statistical models in a Bayesian framework, we are seeking to iden-
tify the parameters which optimise the joint posterior distribution or the marginal
posterior distribution of the model of interest, as in (3.1). Unfortunately, these dis-
tributions are often not analytically available, and could be multi-modal. Hence,
Markov Chain Monte Carlo (MCMC) simulation methods are used to make in-
ference and computing posterior quantities of interest. We next introduce some
background theory that have been foundation to build the most commonly used
MCMC methods.

3.1.1.1 MCMC methods

Markov chain Monte Carlo (MCMC) methods allows us to simulate an irreducible,
aperiodic Markov chain1 for which the stationary distribution equals the target dis-
tribution of interest. This simulation approach takes advantage of the property
of Markov chain convergence to produce correlated samples from any target dis-
tribution, which after convergence need only be known up to proportionality. For
extensive background on MCMC methods see Robert and Casella (2004).

Let ⇡ be the joint posterior distribution of interest, known up to a normalising
constant, and let ✓ = (✓1, ✓2, . . . , ✓M) be the sample of ⇡ generated by the MCMC
sampler, where M is the length of the chain after removing a burn-in period.

At stage t + 1 of an MCMC sampling scheme, the so-called transition kernel,
denoted Q(✓t+1|✓t), is used to generate the new state ✓t+1, conditional on the
present state ✓t. In practise, the following restrictive condition, known as detailed
balance, is generally imposed to ensure the convergence of the Markov chain to

1
A Markov chain is a stochastic process with the Markov property, i.e. the next state of the

chain depends only on the preceding state.



48 Chapter 3. Modelling the Rate of Occurrence of New Edges

the required stationary distribution:

⇡(✓t+1)Q(✓t|✓t+1) = ⇡(✓t)Q(✓t+1|✓t). (3.5)

A chain which satisfies this property is said to be reversible, as the probability
of moving from ✓t to ✓t+1 is equal to the probability of moving from ✓t+1 to ✓t, for
all values of ✓t and ✓t+1. Although this is a stronger than necessary condition to
ensure convergence, it is satisfied by a wide variety of algorithms that have been
proposed, including the well-known Metropolis-Hastings algorithm.

Metropolis-Hastings algorithm A very general method for constructing a
suitable Markov chain is the Metropolis-Hastings (M-H) algorithm (Metropolis
et al., 1953; Hastings, 1970), which is outlined in Algorithm 1. The general form
of this algorithm is briefly described below as it will be used throughout this thesis
to perform posterior inference on the different models presented.

At each iteration t, a new value ✓t+1 is drawn from a proposal distribution
q(✓t, ·). This new proposal ✓t+1 is accepted with a probability a(✓t, ✓t+1), whose
form is given in Algorithm 1. A Markov chain generated according to Algorithm 1
will always converge because the detailed balance property is guaranteed to hold
(Bernardo and Smith, 2007; Denison et al., 2002). Under this updating scheme,
the elements of the vector ✓ can be conveniently updated jointly or alternatively
in a sequential way, depending on how the proposal density is specified.

Other popular MCMC algorithms include Reversible-Jump MCMC (RJM-
CMC) (Green, 1995; Clyde, 1999) and the Gibbs sampler (Gelfand and Smith,
1990). RJMCMC is an extension of M-H to a varying-dimension problem. This
algorithm is capable of reversible jumping between subspaces of differing dimen-
sionality and thus it can be used for comparing models of different dimensions.
This property makes it popular in Bayesian variable selection, where models with
a varying number of parameters need to be compared. The Gibbs sampler is
equivalent to combining Metropolis-Hastings samplers, where all proposed moves,
sampled from their full conditional distribution, are accepted with probability 1.



3.2. Modelling the rate of occurrence of new edges through variable
selection 49

Algorithm 1 Standard Metropolis-Hastings Algorithm

1: INPUT= an initial value ✓0, a proposal density q(·|✓), a target density ⇡, a

number of samples M

2: for t = 1, . . . ,M do

3: Sample ✓
0
⇠ q(·|✓t�1)

4: ↵(✓t�1, ✓
0) = min{

⇡(✓0)q(✓t�1|✓0)
⇡(✓t�1)q(✓0|✓t�1)

, 1}

5: Sample u ⇠ Uniform(0, 1)

6: if u < ↵(✓t�1, ✓
0) then

7: ✓t = ✓
0

8: else

9: ✓t = ✓t�1

10: OUTPUT=Markov chain ✓1, ✓2, . . . , ✓M with stationary distribution ⇡

However, it is often the case that the full conditional distributions of some pa-
rameters are too difficult to compute, or not analytically available and hence the
Gibbs sampler cannot be used. In such cases, the Gibbs sampler can be extended
by sequentially updating each element of the parameter vector and using a single
Metropolis-Hastings move for those elements that cannot be sampled from their
full conditional distributions. Alternatively, a slice sampling (Neal, 2003) move
can be used.

3.2 Modelling the rate of occurrence of new edges

through variable selection

The work presented here refers to a logistic model, which is a generalised linear
model (McCullagh, 1984) for a binary response with associated probability ⇡ and
logit link function logit(⇡) = log{⇡/(1� ⇡)}, assumed to be a linear model of the
regressors. Bayesian model averaging as described in Section 3.1 is then applied
to this model to find an optimal subset of variables to be included in the model.



50 Chapter 3. Modelling the Rate of Occurrence of New Edges

3.2.1 Logistic regression model for new edges

In this section, we focus on event data emanating from a single client IP address
within the computer network, referred to from this point as IP x̃, i.e. from the time-
ordered sequence of connections (T , E), we only focus on the subprocess (T x̃

, E
x̃)

for which the client mark is x̃.

For the data analysed in this chapter, all event times were originally recorded to
the nearest millisecond but then further rounded to the second for computational
tractability. Hence, here we model new edge formation taking a discrete time
perspective, although the underlying process of arrivals of connections in the graph
operates in continuous time as described in Section 2.3. Let the event times take
discrete steps t = 1, 2, . . . and let the increment dNx̃(t) be a Bernoulli(⇡x̃(t))

random variable for the presence of a new edge at time t, which takes the value of
1 if the next observed edge is new and zero otherwise. Then, ⇡x̃(t) = P(dNx̃(t) = 1)

and the saturated model for ⇡x̃(t) which we consider here is

logit(⇡x̃(t)) = �0 + �1t+ �2N
+
x̃ (t) + �3Ix̃,1(t) + �4Ix̃,2(t)

+ �5Duration+ �6Protocol + �7PortSSH+

+ �8PortHTTP + �9PortDNS + �10PortIMAP+

+ �11URGENT + �12ACK + �13PUSH+

+ �14RESET + �15SY N + �16FIN,

(3.6)

where N
+
x̃ (t) is the number of unique server IP addresses connected to by IP x̃

at time t, Ix̃,1(t) an indicator for whether the last edge was new, and Ix̃,2(t) an
indicator for whether the last two edges were both new. These variables have been
previously defined in (2.7), (2.5) and (2.6). Several terms summarising the last
flow are also included: the duration of the connection, the protocol, four indicator
variables for the server port used and six indicator variables derived from the TCP
flag fields (see Table 3.1).

The dummy variable for the protocol field indicates whether the protocol for
the last connection was TCP or UDP. From the full extent of ports used, four



3.2. Modelling the rate of occurrence of new edges through variable
selection 51

Variables Categories Values
TCP 6Protocol UDP 17

SSH 22Port HTTP 80/8080
DNS 53
IMAP 143

URGENT 0/1TCP fields ACK 0/1
PUSH 0/1
RESET 0/1
SYS 0/1
FIN 0/1

Table 3.1: Dummy variables included in the analysis.

dummy variables were created indicating whether the application was SSH (Secure
Shell protocol), HTTP (Hypertext Transfer Protocol, used by web browsers), DNS
(Domain Name System protocol for converting domain names to IP addresses) or
IMAP (email applications including Outlook, Eudora and Thunderbird). Finally,
the TCP variables indicate that the Urgent pointer field and Acknowledgement
field are significant, the buffered data are pushed to the receiving application, the
connection is reset, the sequence numbers are synchronised and finally that the
connection with the sender is closed.

3.2.2 Bayesian model averaging

Following the approach described in Section 3.1, we seek to calculate the posterior
probability of each possible model Mk, as in (3.2). Let �k = (�0, . . . , �dk) the
vector of model coefficients under model Mk and let P(E|T , �,Mk) be the logistic
regression likelihood for all the parameters included in model Mk, conditioning on
the event times T . Note that each possible model is a subset of the saturated
model presented in (3.6), for which �k = (�0, . . . , �16). The marginal likelihood
in (3.3) does not here have closed form, and so we use the Bayesian Information



52 Chapter 3. Modelling the Rate of Occurrence of New Edges

Criterion (BIC) (Schwarz, 1978) to obtain the following approximation for the
marginal log-likelihood defined in (3.2),

logP(E|T ,Mk) ⇡ logP(E|T , �̂k,Mk)�
dk

2
logn, (3.7)

where n is the number of observed events in the time-ordered sequence of data
(E , T ). Then, for each model Mk the joint posterior distribution of all unknown
parameters is given by

P(Mk|T , E) / P(E|T ,Mk)P(Mk). (3.8)

The implementation of BMA involves the specification of two prior distribu-
tions: a prior for each parameter of the model and the prior probability of each
model. We assume all combinations of predictors to be equally likely a priori so
that p(Mk) =

1
K , for each k, meaning that the posterior model probability for all

possible models were computed using the diffuse, but proper, prior distributions
(Raftery, 1988; Hoeting et al., 1999). Uniform prior distributions are then as-
sumed for each regression coefficient and posterior estimates are inferred through
the Metropolis-Hastings algorithm. We explore the model space with the Occam’s
principle of parsimony for scientific explanation (MacKay, 1991), following the
procedure in Hoeting et al. (1999). Occam’s razor is inherently invoked in the
Bayesian framework: considering two models Ml and Mk, if Ml ⇢ Mk then the
marginal likelihood (3.7) will be lower for Ml than for Mk, if Mk already fits the
data well; however, there will always be some other data that will be modelled
better through Ml than Mk. Therefore, the Bayesian paradigm do not typically
suffer from overfitting problems and provide a simple way to perform model com-
parison. In particular, the algorithm used here iteratively compares the two nested
models Ml and Mk, and in case Ml is rejected, then all sub-models of Ml are also
rejected. The set of selected model can be written as

M
0 =

⇢
Mk :

maxl P(Ml|T , E)

P(Mk|T , E)
 1

�
, (3.9)



3.3. Detecting automated polling traffic 53

and thus, models not belonging to M
0 will be excluded from the calculation of

the posterior probability in (3.1). This will leave us with a set of nested plausible
models for monitoring the normal rate of occurrence of the new edges in the graph.

When building such a model for new edge formation, a difficulty arises from the
fact that a large portion of the traffic analysed generally tends to be automatically
generated. This polling behaviour can be either indicative of malicious attacks or
it can be caused by automated requests permitted by the client. In both cases,
network flow data of this nature may interfere with the reliability of the model,
since bursts of new edge formation would be predictably broken up by periodic
connections to established hosts. Separating this behaviour from the human-level
traffic is therefore very important in the present context. A method for detecting
automated polling traffic is thus described below.

3.3 Detecting automated polling traffic

In a computer network, automated traffic tends to be strongly periodic at higher
frequencies compared to the traffic generated by a human and thus detecting pe-
riodic behaviours can be indicative of polling. Examples of automated, legitimate
polling may include connections to the network administrative servers; polling
requests for file updates from a running Dropbox client; and regular automatic
refreshing of a live.com page in a web browser. Following Heard et al. (2014),
we sequentially conduct a Fourier analysis of the traffic occurring along each edge
in the network between a specific IP address and a given host. In particular, a
discrete Fourier transform, which is a powerful tool in signal processing, is used
to obtain a spectrum, or periodogram, for each edge in the network. This will give
us the contribution of each frequency to the signal on that edge and peaks in the
spectrum indicate the presence of polling at that frequency. When polling is iden-
tified, the corresponding edges are removed from the bulk data. In this way, the
remaining data, i.e. the portion of data that should reflect human-driven traffic
only, can be used for suitable statistical modelling.



54 Chapter 3. Modelling the Rate of Occurrence of New Edges

For two IP addresses x and y, and for t � 0, Nxy(t) is the counting process
of NetFlow events with source IP x and destination IP y occurring by time t,
as defined in (2.2). This quantity, which monitors the activity on one edge of
the network graph, is here treated as a discrete time process. Let the increment
dNxy(t) 2 {0, 1} correspond to the presence or absence of connections from x to y

at time t. Then, the periodogram at frequency f > 0 is defined via the discrete
Fourier transform (Halliday and Rosenberg, 1999),

Sxy(f) =

����
TX

t=1

(dNxy(t)�Nxy(T )/T )e
�i2⇡ft

����
2�

T, (3.10)

where Nxy(T )/T is the mean rate of the process, and by assuming the process to be
approximately homogeneous, we have that dNxy(t) � Nxy(T )/T is approximately
stationary.

A large value of S(f) corresponds to strong periodic behaviour at frequency
f . The fast Fourier transform allows S(f) to be calculated efficiently for the
Fourier frequencies f 2 F = {0, 1/(T�t), 2/(T�t), . . . , (T/2 � 1)/(T�t)}. For
each frequency, we can test its periodicity via Fisher’s g-test (Fisher, 1929) as
follows

gxy = max
f2F

Sxy(f)

�X

f 02F

Sxy(f
0). (3.11)

For a realised value g of (3.11), the corresponding p-value is the probability of
observing a value of gxy greater than or equal to g under the null hypothesis of a
purely random process. Under asymptotic normality, the distribution of g can be
computed exactly and the p-value is given by

1� exp(�m ⇤ exp[{�g ⇤ (m� 1� logm)/(m� g)}]), (3.12)

where m = bT/2c. Full details for this calculation can also be found in (Wichert
et al., 2004). Frequencies with p-values < 0.01 were classified as corresponding to
periodic behaviour.



3.4. An application to Imperial College London NetFlow data 55

3.4 An application to Imperial College London Net-

Flow data

The model described in Section 3.2 and the approach to filter out polling as de-
scribed in Section 3.3 is here applied to the real network flow data from the com-
puter network of Imperial College London. The data have been obtained from
router level flow records gathered from one of the main networks of the Imperial
College London internal domain, which have been described in more details in
Section 2.1.

3.4.1 Network flow data

The data were gathered from a large available collection of flow data, drawn from
two collection periods of lengths 96 days and 53 days respectively, separated by a
break in collection of 43 days. Two small, differently motivated subsets of these
data have been analysed.

The first subset of data contains the client network flow records for IP x̃.
Variable selection was conducted and then repeated on the same data set after
removing automated periodic connections as described in Section 3.3. The second
subset of data contains the client network flow records of another IP address, IP z,
which was found to be infected towards the end of the data collection period. Again
two analyses were performed, this time considering separating the two continuous
collection intervals; the first interval contained no known malicious attack, whereas
the second was known to contain infected data.

3.4.2 Variable selection results

There were 15 potential candidate variables in (3.6), implying a total number of
215 possible models. For MCMC, the Metropolis-Hastings algorithm was used with
a total number of iterations set to 10,000, after a burn-in period of size 1,000.



56 Chapter 3. Modelling the Rate of Occurrence of New Edges

Tables 3.2 and 3.3 contain the posterior means, standard deviations and pos-
terior effect probabilities P (� 6= 0|T , E), based on the data for IP x̃ with and
without polling traffic, respectively. For each coefficient, the posterior probability
of inclusion P (� 6= 0|T , E) is measured by the proportion of times a model con-
taining that coefficient was selected in M

0. Note that these parameter estimates
and standard deviations directly incorporate model uncertainty.

Variable Coefficient Standard Error P(� 6= 0|T , E) (%)
Intercept -4.01516 0.04825 100

t · · 0
N

+
x̃ (t) -0.00019 0.00017 100

Ix̃,1(t) 2.28091 0.00734 100
Ix̃,2(t) 0.77250 0.0161 78

Duration -0.00064 0.00142 100
Protocol 0.39602 0.04672 40
PortSSH · · 0

PortHTTP 0.67701 0.04472 70
PortDNS · · 0
PortIMAP · · 0

Urgent · · 0
Ack 0.60023 0.05237 100
Push 0.46302 0.06064 40
Reset · · 0
Syn 0.98544 0.07321 80
Fin 0.56254 0.06311 41

Table 3.2: Coefficient estimates from logistic regression for IP x̃.

The results show that the most influential variables on the arrival of new edges
are N+

x̃ (t), Ix̃,1(t), Ix̃,2(t), and the duration, the use of a web port and the acknowl-
edgement field in the last connection. The variables corresponding to the other
ports included in the analysis were never selected by the procedure, highlighting
the significant weight of a web browser connection for forming new edges. Sur-
prisingly, the variable t, intuitively influential on the response variable, was never
selected. This may be due to the presence of a strong correlation with the variable
N

+
x̃ (t), which possibly mitigates its effect. The variables Ix̃,1(t) and Ix̃,2(t) have

the highest (positive) posterior mean effects; intuitively, this tells us that arrivals
of new edges occur in bursts, and so knowledge that the last edges were new is
very influential on the arrival of a new edge next time.



3.4. An application to Imperial College London NetFlow data 57

Variable Coefficient Standard Error P(� 6= 0|T , E) (%)
Intercept -2.101000 0.074942 100

t -0.000002 0.000003 100
N

+
x̃ (t) -0.004282 0.000039 100

Ix̃,1(t) 0.468421 0.064454 100
Ix̃,2(t) 1.342271 0.123445 100

Duration · · 0
Protocol -2.067323 0.065836 100
PortSSH -0.308322 0.070561 97

PortHTTP 0.313198 0.040813 100
PortDNS · · 0
PortIMAP · · 0

Urgent · · 0
Ack 0.584367 0.070741 100
Push -0.098733 0.062122 0.6
Reset -0.233741 0.103221 1.8
Syn 0.970156 0.063349 100
Fin -0.143887 0.058094 3.5

Table 3.3: Coefficient estimates from logistic regression for IP x̃ with polling data
removed.

IP x̃ is a relatively active node, which acts as a client in 2,644,780 NetFlow
events within the period of data collection. The corresponding distribution of the
time of day of the client connection events for IP x̃ is shown in Figure 3.1. It
can be noted that this distribution is much flatter than the plot in Figure 2.1 for
the global pattern of the network shown in the previous chapter. Furthermore, it
has unusual peaks which are not consistent with diurnal human behaviour. This
has motivated us to repeat the analysis after filtering out the automated periodic
connections.

A total number of 1377 IP addresses were detected as responsible for polling
traffic, using the Fourier analysis presented in Section 3.3. Some interesting ex-
amples of IP addresses removed include Turkish, Honk Kong and several Chinese
boxes trying to gain access to the machine via remote SSH connection. All of these
IP addresses were then found to be reported for malicious activity.

Comparing results obtained when the polling behaviour was removed, it can be
noted that PortHTTP increases to a 100% probability of inclusion, while the indi-
cators of data pushing and end of connection become less influential. Importantly,



58 Chapter 3. Modelling the Rate of Occurrence of New Edges

is much flatter than Figure 1 and has unusual peaks which are
not consistent with diurnal human behaviour.

0 5 10 15 20

0.
00

20
0.

00
30

0.
00

40
0.

00
50

Time of day (hours)

Pr
ob

ab
ilit

y

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

Fig. 1. The distribution of daily arrival times of network flow events across
the whole network, estimated to five minute bins using the data obtained over
97 days, shown on [0,24] hours (top) to demonstrate the sinusoidal nature,
and correctly as a circular distribution (bottom).

III. DETECTING PERIODICITY

For two IP addresses X and Y , and for t � 0, let
NXY (t) be the counting process of network flow events with
source IP X and destination IP Y occurring by time t. If the
internet is regarded as a graph with IP addresses as nodes,
then NXY (t) monitors the activity on one edge of that graph.
NXY (t) will be treated as a discrete time process: although
the underlying event process may operate in continuous time,
the recorded data will be rounded to some fixed level of
accuracy and coincidental values will be possible. For the
data analysed in this article, all event times were originally
recorded to the nearest millisecond, but for computational
tractability they were further rounded to the second. Given

0 5 10 15 20

0.
00

25
0.

00
35

0.
00

45

Time of day (hours)

Pr
ob

ab
ilit

y

0 1
2

3

4

5

6

7

8

9

10
111213

14

15

16

17

18

19

20

21

22
23

Fig. 2. The distribution of unfiltered client event times for IP X , estimated
to five minute bins using the data obtained over 97 days.

that NXY (t) is a discrete time process, define the increment
dNXY (t) = NXY (t) � NXY (t � 1).

Consideration of node (rather than edge) level activ-
ity would require a simple extension of this notation. Let
NX·(t) =

P
Y NXY (t) be the counting process of all recorded

network flow events with source IP X , and similarly let
N·Y (t) =

P
X NXY (t) be the counting process of all events

with destination IP Y . These counting processes monitor the
connection activity of a node in the internet graph, either
from a client or server perspective respectively. Finally, let
NX(t) = NX·(t) + N·X(t) count all of the events involv-
ing IP X . All of these quantities are potentially worthy of
consideration when looking to detect anomalous behaviour,
depending upon the nature of the actual anomaly. However,
in the subsequent analysis here attention is restricted to edges
(X ,Y ) from the fixed client IP X of interest.

After observing NXY (t) for T units of time, the mean rate
of the process is estimated to be NXY (T )/T ; by assuming

Figure 3.1: The distribution of unfiltered client event times for IP x̃, estimated to
five minute bins using the data obtained over 97 days.

Ix̃,2(t) is now included in the model 100% of the time, supporting the hypothesis
that bursts of new edge activity are more easily seen to be significant once polling
traffic has been filtered out. Moreover, the variable t now recovers its intuitive
influence on the response variable. The protocol variable increases to a 100% prob-
ability of inclusion, showing the importance of distinguishing whether the protocol
for the last connection was TCP or UDP. Specifically, it has the highest negative
posterior mean effect, indicating that the presence of a UDP connection decreases
the probability of the next edge to be new. This might be due to the fact that
UDP protocols are mostly used for live broadcasts and online connections, which
may be less relevant in an attack setting. Furthermore, the indicator variable of
an SSH connection is now another influential variable of the model, as well as
the synchronisation of sequence numbers, which increases in posterior probability
of inclusion. Surprisingly, the duration of the last connection was never selected,
while in the unfiltered case this variable was always selected.



3.4. An application to Imperial College London NetFlow data 59

The other two data sets analysed consist of client connections of an IP address
on the Imperial College network that was eventually infected, IP z (cf. Section
3.4.1). They correspond to the flow data collections either side of a 43 day break,
where the second collection is suspected to contain the infection event. Figure
3.2 shows the number of events occurring in each 20-minute bin of time, before
and after the break in data collection. The circled outlier is very pronounced,
indicating clear anomalous behaviour occurring in the second period.

0 50 100 150

0
20

00
0

40
00

0
60

00
0

80
00

0

Day

N
um

be
r o

f e
ve

nt
s

●

BR
EA

K 
 IN

  C
O

LL
EC

TI
O

N

Figure 3.2: The number of client event observed in the network flow data for a
particular IP address on the network, IP z, which towards the end of the collection
period was eventually found to be compromised.

Results for the first and second collection periods are reported in Tables 3.4
and 3.5 respectively. Again, the most influential variables on the rate of arrival
of new edges are N

+
z (t), Iz,1(t), Iz,2(t), and the duration, the use of a web port

and the acknowledgement field of the last connection. The indicator variable
corresponding to a DNS connection acquires more importance with respect to the
previous analysis, especially with the data set containing the malicious event: here



60 Chapter 3. Modelling the Rate of Occurrence of New Edges

this indicator is always selected. Furthermore, the synchronisation variable has a
very different impact on the two data sets. Whereas in the first one it does not
seem influential, in the second it is selected with a 100% probability, indicating
the importance of a matching connection after having sent a connection request.

Variable Coefficient Standard Error P(� 6= 0|T , E) (%)
Intercept -3.59102 0.05861 100

t · · 0
N

+
z (t) -0.00731 0.00971 70

Iz,1(t) 1.74021 0.01025 90
Iz,2(t) 0.68375 0.03573 100

Duration 0.00184 0.00067 100
Protocol 1.43734 0.05111 57
PortSSH · · 0

PortHTTP 0.36513 0.03826 100
PortDNS 1.09809 0.07823 56
PortIMAP · · 0

Urgent · · 0
Ack 1.12033 0.06221 100
Push · · 0
Reset · · 0
Syn 0.09141 0.61321 12
Fin · · 0

Table 3.4: Coefficient estimates from logistic regression for IP z before infection.

Variable selection has narrowed the choice to a few plausible models, yielding a
feasible implementation of Bayes factor’s model comparison (Jeffreys, 1961; Kass
and Raftery, 1995). Following the results of Section 3.4, we calculate Bayes factors
Bm0, for the saturated model (3.6) against a null model M0 (a model with no
covariates included), for the different subsets of data analysed:

Bm0 =
P(E|T ,Mm)

P(E|T ,M0)
, (3.13)

Here, the posterior probability for each model is now calculated via MCMC, using
M-H moves. As exemplification, only three Bayes factors were computed for each
dataset, each comparing the null model with the best three models selected by
the variable selection procedure, i.e. the models with the highest probabilities
of inclusion. Results for the four different datasets are reported in Table 3.6,



3.4. An application to Imperial College London NetFlow data 61

Variable Coefficient Standard Error P(� 6= 0|T , E) (%)
Intercept -6.58301 0.06965 100

t · · 0
N

+
z (t) -0.00053 0.00371 100

Iz,1(t) 1.24022 0.00524 90
Iz,2(t) 0.59323 0.02574 100

Duration 0.00084 0.00006 100
Protocol 1.03676 0.05913 60
PortSSH · · 0

PortHTTP 0.46661 0.02841 100
PortDNS 3.49845 0.64825 90
PortIMAP · · 0

Urgent · · 0
Ack 1.82077 0.05822 100
Push · · 0
Reset · · 0
Syn 0.51412 0.51389 100
Fin · · 0

Table 3.5: Coefficient estimates from logistic regression for IP z after infection.

confirming the considerable contribution provided by the covariates included in
the model.



62 Chapter 3. Modelling the Rate of Occurrence of New Edges

D
at

a
su

bs
et

M
od

el
B

ay
es

fa
ct

or
B

m
0

M
1
:
N

+ x̃
(t
)
+
I
x̃
,1
(t
)
+
I
x̃
,2
(t
)
+
D
u
r
a
t
io
n
+
P
r
o
t
o
c
o
l
+
P
o
r
t
H
T
T
P
+
A
c
k
+
S
y
n

6.
4
⇥
10

4

M
2
:
N

+ x̃
(t
)
+
I
x̃
,1
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
A
c
k
+
F
in

6.
1
⇥
10

3
IP

x̃
un

fil
te

re
d

da
ta

M
3
:
N

+ x̃
(t
)
+
I
x̃
,1
(t
)
+
I
x̃
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
A
c
k

6.
3
⇥
10

3

M
1
:
N

+ x̃
(t
)
+
I
x̃
,1
(t
)
+
I
x̃
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
A
c
k
+
S
y
n

2.
3
⇥
10

3

M
2
:
N

+ x̃
(t
)
+
I
x̃
,1
(t
)
+
I
x̃
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
A
c
k
+
R
e
s
e
t

2.
0
⇥
10

3
IP

x̃
fil

te
re

d
da

ta
M

3
:
N

+ z
(t
)
+
I
z
,1
(t
)
+
I
z
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
A
c
k

1.
9
⇥
10

3

M
1
:
N

+ z
(t
)
+
I
z
,1
(t
)
+
I
z
,2
(t
)
+
D
u
r
a
t
io
n
+
P
r
o
t
o
c
o
l
+
P
o
r
t
H
T
T
P
+
P
o
r
t
D
N
S
+
A
c
k
+
S
y
n

1.
8
⇥
10

4

M
2
:
N

+ z
(t
)
+
I
z
,1
(t
)
+
I
z
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
P
o
r
t
D
N
S
+
A
c
k

1.
7
⇥
10

4
IP

z
be

fo
re

in
fe

ct
io

n
M

3
:
I
z
,1
(t
)
+
I
z
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
A
c
k

0.
7
⇥
10

4

M
1
:
N

+ z
(t
)
+
I
z
,1
(t
)
+
I
z
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
P
o
r
t
D
N
S
+
A
c
k
+
S
y
n

1.
8
⇥
10

4

M
2
:
N

+ z
(t
)
+
I
z
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
P
o
r
t
D
N
S
+
A
c
k
+
S
y
n

1.
8
⇥
10

4
IP

z
af

te
r

in
fe

ct
io

n
M

3
:
N

+ z
(t
)
+
I
z
,2
(t
)
+
D
u
r
a
t
io
n
+
P
o
r
t
H
T
T
P
+
A
c
k
+
S
y
n

1.
1
⇥
10

4

Ta
bl

e
3.

6:
B

ay
es

fa
ct

or
s

fo
r

th
e

be
st

th
re

e
m

od
el

s
ag

ai
ns

t
th

e
nu

ll
m

od
el

,f
or

th
e

fo
ur

di
ffe

re
nt

su
bs

et
s

of
da

ta
an

al
ys

ed
.



Chapter 4
Biclustering Methods for Computer

Network Data

The importance of clustering a computer network for cyber-security purposes is
two-fold. Firstly, it allows us to learn the underlying latent structure of the net-
work, where hosts sharing similar connection behaviour can be grouped together.
Secondly, it represents an important step when modelling the characteristics of
new edge formation, since it can provide relevant cluster-level covariates to in-
clude in the model, as later discussed in Chapter 5 and Chapter 6. Specifically,
clustering a computer network involves clustering both the set of clients, or source
IP addresses, and the set of servers, or destination IP addresses, and thus can be
viewed as a biclustering problem. This chapter mainly addresses the problem of
biclustering the adjacency matrix of a bipartite computer network graph.

Clustering is defined as the grouping of similar objects (Hartigan, 1975), while
biclustering, a natural extension of the clustering problem, is the simultaneous
clustering of both the rows and the columns of a data matrix creating a block-like
pattern within the matrix (Hartigan, 1972). There are many different ways to de-
fine cluster similarity and depending on the definition chosen, the resulting cluster
configurations might strongly differ. Most of clustering methods can be broadly
divided into two categories: hierarchical clustering and flat clustering. The former

63



64 Chapter 4. Biclustering Methods for Computer Network Data

creates a hierarchy of clusters using a top-down or a bottom-up technique, whilst
the latter is an efficient and simpler approach where no hierarchy is created. Hier-
archical clustering is potentially more informative and accurate than unstructured,
flat clustering and it does not require the a priori specification of the number of
clusters. However, this comes at the cost of lower efficiency, with a complexity
which is at least quadratic in the number of observations, compared to the linear
complexity of algorithms such as standard k-means (MacQueen, 1967; Hartigan
and Wong, 1979). Due to the fact that computer networks are large, our aim is
for the methods in this chapter to be efficient while still retaining their desirable
properties; for the hereby proposed hierarchical clustering such properties are re-
sulting from a Bayesian paradigm. In the following, both hierarchical and fast, flat
clustering techniques are introduced and compared, with the purpose of assessing
the balance between clustering accuracy and computational feasibility.

The structure of this chapter is as follows: Section 3.1 introduces hierarchical
agglomerative model-based clustering in the context of computer networks and
its extension to agglomerative model-based biclustering. Section 3.2 presents two
techniques for performing flat biclustering, while in Section 3.3 a simulation study
is performed for assessing the performance of the different methods introduced.

4.1 Hierarchical agglomerative clustering methods

Hierarchical clustering creates a tree structure of cluster configurations, known as
a dendrogram, each with a different number of clusters. This can be achieved in
an agglomerative fashion, starting with all observations in singleton clusters and
then iteratively merging clusters based on some optimisation criterion until only
one remains, or in a divisive fashion, where the data are separated repeatedly into
finer groups. Agglomerative clustering is faster since the number of possible merges
is lower than possible splits. For this reason, agglomerative hierarchical clustering
has been the most commonly used classification scheme (Duda and Hart, 1973).

Some popular optimisation criteria are the sum within-group sum of squares



4.1. Hierarchical agglomerative clustering methods 65

(Ward, 1963) and some given distance measure such as the Euclidean distance
between cluster means or the shortest distance between clusters (Gower and Ross,
1969). These heuristic approaches remain popular although it is not easy to assess
some of their statistical properties, such as defining the uncertainty of the alloca-
tion of an item to a group or quantifying the probability of two items belonging to
the same group. Model-based clustering (Banfield and Raftery, 1993; McLachlan
and Basford, 1988) offers a principled alternative to these issues. In this approach,
clusters are defined as groups of objects which have been generated by the same
underlying probability distribution. An extensive review of model-based cluster
methods in general can be found in Bock (1996).

In the frequentist framework, the estimation procedure for model-based ag-
glomerative clustering methods consists of fitting a model at each stage of the
hierarchy, and then successively merging those clusters with the greatest increase
in the classification likelihood (Banfield and Raftery, 1993). In the Bayesian ap-
proach, which is the one adopted here, it is the marginal posterior distribution
which is maximised by each merge. This approach is taken, for example, in the
MCLUST procedure of Fraley and Raftery (2002), which fits Gaussian process
clusters optimised against a BIC criterion. The advantage of using a Bayesian
approach is to provide a posterior probability, which conveniently enables compar-
isons between each configuration found.

4.1.1 Bayesian model-based clustering

As discussed above, in model-based agglomerative clustering each data point is at
first assigned to its own cluster and successively the cluster pairs which maximise
an objective function are merged. A model-based approach defines a probability
model as the clustering objective function, whilst the Bayesian formulation enables
the partition of items into subsets to be a parameter of the probability model,
subject to prior assumptions. Excellent background on Bayesian model-based
clustering can be found in Banfield and Raftery (1993) and Fraley and Raftery
(2002).



66 Chapter 4. Biclustering Methods for Computer Network Data

There are two main approaches to Bayesian model-based clustering. The first
uses MCMC methods to obtain a sample from the posterior distribution in order to
infer an optimal cluster configuration (Booth et al., 2008; Medvedovic et al., 2004;
Qin, 2006). MCMC approaches allow to fit rather complex models and to estimate
the number of groups at the same time as the other parameters (Richardson and
Green, 1997). However, as the number of possible cluster configurations increases,
MCMC schemes may suffer from poor mixing and very slow running times. The
second is a deterministic approach which relies upon agglomerative hierarchical
clustering to iteratively merging the cluster pair which provide the largest mul-
tiplicative change in posterior probability. Examples include Heller and Ghahra-
mani (2005), which present an algorithm for Bayesian hierarchical clustering based
on evaluating marginal likelihoods of Dirichlet process mixtures and Heard et al.
(2006), which introduce a Bayesian model-based hierarchical clustering algorithm
for locally maximise the marginal posterior distribution for each possible number
of clusters. In the following sections, the latter approach is adopted.

4.1.2 Clustering model for computer network data

For notational convenience, suppose here that the clients and servers have been
numbered such that X = {1, . . . , |X|} and Y = {1, . . . , |Y |}. After observing
n events in the computer network graph (t01, (x

0
1, y

0
1)), . . . , (t

0
n, (x

0
n, y

0
n)), let A 2

{0, 1}|X|⇥|Y | be the |X|⇥|Y | adjacency matrix with entries Ax,y =
Pn

i=1 (x,y){(x0
i, y

0
i)}

indicating which of the possible edges have been observed, i.e. Axy = 1 if and only
if client x connected to server x at least once. Note that here A ⌘ Gt0n . In this
section we focus on clustering the client set only, with the purpose of dividing the
data matrix A into K row blocks (after a permutation). In the next section this
will be extended to enable biclustering of both clients and servers.

For the client set X, a cluster configuration is a partition of the index set of
clients {1, . . . , |X|} into K non-empty subsets {C1, . . . , CK}, where the x

th client
is allocated to the k

th cluster if and only if x 2 Ck. Let ✓ be a K ⇥ |Y | matrix of
cluster-specific parameters, such that ✓ky is the probability that a client in cluster



4.1. Hierarchical agglomerative clustering methods 67

k will connect to server y. For the data matrix A, the implied likelihood function
for the cluster configuration and parameter is given by

L(A| ,✓) =
KY

k=1

Y

x2Ck

|Y |Y

y=1

✓
Axy

ky (1� ✓ky)
1�Axy . (4.1)

The Bayesian framework requires the specification of prior distributions for ob-
taining the joint posterior distribution P(✓, |A) of model parameters. We choose
independent, conjugate Beta(a, b) priors for the probabilities ✓ky with density func-
tion:

f(✓ky) =
�(a+ b)

�(a)�(b)
✓ky

a�1(1� ✓ky)
b�1

. (4.2)

We assume exchangeability when specifying a prior for the cluster configuration
so that a priori no two observations are more likely to belong to the same

cluster. Specifically, we use a uniform distribution over the space of all possible
cluster configurations. Alternatively, the popular Dirichlet process prior could be
employed (Kim et al., 2006).

The primary interest here is the allocation of the objects to clusters and so
the marginal posterior distribution of is the objective function that we seek to
maximise. This can be obtained in closed-form up to proportionality as

P( |A) / P(A| ) =

Z
L(A| ,✓)f(✓)d✓ =

=
KY

k=1

|Y |Y

y=1

�(a+ b)�(a+mky)�(b+ nk �mky)

�(a)�(b)�(a+ b+ nk)
,

(4.3)

where mky =
P

x2Ck
Axy and nk = |Ck| is the number of clients in cluster k.

In the process of deciding upon possible merges and splits, agglomerative clus-
tering requires a measure of similarity between any pair of clusters to be specified.
An intuitive choice is the multiplicative change in the posterior probability in (4.3)



68 Chapter 4. Biclustering Methods for Computer Network Data

which results from merging the clusters pair:

S
(X)
km =

P( km
|A)

P( |A)
, (4.4)

where km represents the cluster configuration obtained from by merging cluster
k and cluster m. By (4.3), this quantity is equivalent to the ratio of the marginal
likelihoods of the two cluster configurations, with the model parameters integrated
out, enabling a fair comparison between models with a different number of param-
eters. The Bayesian framework automatically embodies the principle of parsimony
for scientific explanation which states that simpler models will always be preferred
to unnecessarily complex ones.

4.1.3 Clustering algorithm

The algorithm is initiated with = {{1}, ..., {|X|}}, i.e. each client is placed in its
own cluster. The pair of clusters which maximise the similarity measure in (4.4) are
then iteratively merged until all clients reside in a single cluster. A nested sequence
of cluster configurations is created and the optimal configuration corresponds to
the configuration in the hierarchy with the largest marginal posterior probability in
(4.3). An algorithm describing this procedure is given in Algorithm 2. In the next
section, this algorithm is extended for performing biclustering, in order to cluster
both the rows (i.e. clients) and the columns (i.e. servers) of the data matrix.

4.1.4 Bayesian model-based biclustering

Biclustering, also known as co-clustering or two-way clustering, refers to the si-
multaneous clustering of the rows and the columns of a data matrix, identifying
“checkerboard” patterns, or sets of rows and sets of columns in the matrices that
are significantly associated. This can reveal underlying structures which are po-
tentially obscured when clustering either the rows or the columns independently.
There are many different biclustering methods developed in the literature and these



4.1. Hierarchical agglomerative clustering methods 69

Algorithm 2 Model-based Clustering

1: INPUT=(|X|⇥ |Y | data matrix A)

2: Set = {{1}, . . . , {|X|}}, i.e. each client in its own cluster

3: Calculate P( |A)

4: Calculate the similarity S
(X)
km for each pair of clusters k and m

5: while | | > 1 do

6: Identify the cluster pairs (k⇤, m⇤) with largest similarity measure

7: Merge row clusters k
⇤ and m

⇤ to form a new cluster c
⇤

8: Update

9: Recalculate S
(X)
kk⇤ for each k 6= c

⇤

10: Identify the optimal partition in the hierarchy : ⇤ = argmax P( |A)

11: OUTPUT=(Cluster configurations hierarchy, optimal cluster configuration
⇤)

have been mostly popular in gene expression analysis (Li et al., 2012; Cheng and
Church, 2000; Fowler and Heard, 2012) and text mining (Busygin et al., 2008).
In its simplest form, biclustering consists of independently clustering rows and
columns and subsequently applying both cluster structures to the data (Alon et al.,
1999). However, this does not take into account possible interactions between rows
and columns. Simultaneous clustering of both rows and columns has been at first
introduced by Hartigan (1972), which discusses a method to iteratively partition-
ing either the rows or the columns of the data according to the partition which
minimises the sum of squares. This partitioning method is computationally con-
suming and therefore not applicable to large data sets.

Fast and efficient methods suitable for large data sets have been later developed.
For instance, Cheng and Church (2000) introduced an algorithm which defines
biclusters as sub-matrices with the mean squared residue score below a user-defined
threshold by iteratively adding or removing rows and columns of the data matrix,
thus yielding a faster performance. A graph-theoretic approach, coupled with
statistical modelling of the data, is presented by Tanay et al. (2002). In this



70 Chapter 4. Biclustering Methods for Computer Network Data

framework, the matrix is modelled as a bipartite graph, a bicluster is defined as a
subgraph, and a likelihood score is used for assessing the significance of observed
subgraphs.

4.1.5 Biclustering model for computer network data

Model-based biclustering is similar to the model-based clustering procedure de-
scribed in the previous section with the assumption that here the observations
assigned to each bicluster are generated by the same underlying distribution. Con-
sidering again the |X|⇥ |Y | relational data matrix A, we define a bicluster configu-
ration as a row partition for the client set X, = {C1, . . . , CL} into L non-empty
row subsets and a column partition for the servers set Y , = {S1, . . . , SM} into M

non-empty column subsets. The Cartesian product of and partitions the data
matrix into biclusters, s.t. the (x, y)th element of A is assigned to the bicluster
(l,m) if and only if x 2 Cl and y 2 Sm.

Let ✓ be a L⇥M matrix of bicluster-specific parameters, such that ✓lm is the
probability that a client in cluster l will connect to a server in cluster m. The
implied likelihood function for the data matrix A is now given by

L(A| , ,✓) =
LY

l=1

MY

m=1

Y

x2Cl,
y2Sm

✓
Axy

lm (1� ✓lm)
1�Axy . (4.5)

As before, we choose a uniform distribution over the space of all possible cluster
configurations, while the prior distributions for each bicluster parameter ✓lm are
taken to be independent, conjugate beta distributions as per (4.2). The objective
function we now seek to maximise is the marginal posterior distribution of the
cluster configuration ( , ) and it can be again computed up to proportionality in



4.1. Hierarchical agglomerative clustering methods 71

closed-form as

P( , |A) / P(A| , ) =

Z
L(A| , ,✓)f(✓)d✓ =

=
LY

l=1

MY

m=1

�(a+ b)�(a+Mlm)�(b�Mlm + nlsm)

�(a)�(b)�(a+ b+ nlsm)
,

(4.6)

where Mlm =
P

x2Cl

P
y2Sm

Axy, nl = |Cl| is the number of clients in cluster k and
sm = |Sm| is the number of servers in cluster m. Some of the calculations needed
to derive this formula can be found in Appendix A.

The similarity measure in (4.4) used to perform agglomerative clustering of
clients (rows) can be extended to servers (columns) as

S
(Y )
km =

P( ,
km

|A)

P( , |A)
. (4.7)

However, simultaneous agglomerative clustering of rows (clients) and columns
(servers) of the data matrix requires the value of the similarity measure S

(Y )
km to

be recalculated for all pairs of column clusters after a merge of two row clusters,
and vice versa for mergers of column clusters. Thus, for a |X| ⇥ |Y | matrix,
the computational complexity of the algorithm is O(|X|

2(1 + |Y |
2) + |Y |

2(1 +

|X|
2)). This computational load is not really affordable for large data matrices

such as those from computer network data. Therefore, we investigate a different
approach, based on iteratively clustering the rows and the columns separately
and considering the impact each row cluster configuration found at the previous
iteration step has on the column clustering and vice versa, the impact each column
cluster configuration has on the row clustering. Agglomerative client clustering and
server clustering are carried out iteratively until the same clustering configurations
are found at two subsequent iteration steps. In this way, for client clustering, the
computational complexity of the algorithm is O(|X|

2) and similarly for server
clustering, the computational complexity is O(|Y |

2).



72 Chapter 4. Biclustering Methods for Computer Network Data

4.1.6 Biclustering algorithm

The algorithm is initiated with = {{1}, ..., {|X|}} and = {{1}, ..., {|Y |}},
i.e. all entries of the data matrix are placed in |X||Y | singleton biclusters. At
each step, the algorithm iterates between applying Algorithm 2 to S

(X)
km for client

clustering and S
(C)
km for server clustering, until convergence, i.e. the same clustering

configurations are found at two iteration steps. Convergence is guaranteed if every
time we switch from client to server clustering, or vice versa from server to client
clustering, agglomerative clustering leads to a model that has the same or higher
marginal likelihood than the one obtained at the previous iteration. A detailed
algorithm is given in Algorithm 3. Note that the procedure is described assuming
the client set is clustered first but in principle, the same algorithm can be applied
by clustering the server set first.

4.1.7 An informative Beta prior

To aid the naive agglomerative clustering algorithm, an informative, empirical
beta distribution was built for both the client and the server clustering steps. For
ease of explanation, let us consider the case of client clustering, where the desired
prior distribution was built for each server in the network with mean equal to the
proportion of clients authenticated on that server computer. The rationale for
using informative prior distributions is the following. Computer networks show
highly skewed connectivity behaviour (as in Figure 2.2), where most of the nodes
have few connections while some nodes are highly connected. For instance, the
2014 LANL computer network data contain three servers with over 9,000 unique
client authentications. Therefore, observing client authentications on such high-
degree servers may not be informative about the client profile, but might dominate
the agglomerative clustering algorithm. Particularly for very high degree or very
low degree nodes, a flat beta prior distribution, e.g. a beta distribution with
parameters a = b = 1, would not be suitable.

Let py be the proportion of the population of clients that connect to server y.



4.1. Hierarchical agglomerative clustering methods 73

Algorithm 3 Model-based Iterative Biclustering
1: INPUT=(|X|⇥ |Y | data matrix A)

2: Set iteration t=1. Set (t=1)={{1}, . . . , {|X|}}, (t=1)={{1}, . . . , {|Y |}} and

(t=1)={( (1), (1))}

3: repeat

4: procedure client-clustering(A)

5: Calculate P( (t), (t)|A)

6: Calculate the similarity S(X)
km for each pair of client clusters k and m

7: while | (t)| > 1 do

8: Identify the cluster pairs (k⇤
, m⇤

) with largest similarity measure

9: Merge row clusters k⇤
and m⇤

to form a new client cluster u⇤

10: Update (t)

11: Recalculate S(X)
ku⇤ for each k 6= u⇤

12: Identify the optimal partition in the hierarchy: (t)⇤ = arg max (t) P( (t), (t)|A)

13: Permute A based on (t)⇤
and set A = AT

14: (t) (t)⇤

15: procedure Server-clustering(A)

16: Calculate P( (t), (t)|A)

17: Calculate the similarity S( )
gl for each pair of server clusters g and l

18: while | (t)| > 1 do

19: Identify the cluster pairs (g⇤
, l⇤) with largest similarity measure

20: Merge column clusters g⇤
and l⇤ to form a new server cluster c⇤

21: Update (t)

22: Recalculate S(Y )
gc⇤ for each g 6= c⇤

23: Identify the optimal partition in the hierarchy: (t)⇤ = arg max (t) P( (t), (t)|A)

24: Set (t) =
⇣

⇤(t), ⇤(t)
⌘

25: Permute A based on (t)⇤
and set A = AT

26: t t + 1

27: (t) (t� 1)⇤

28: until (t) = (t� 1) (same clustering configuration at iteration t-1 and t)

29: OUTPUT=(Optimal cluster configuration
⇤ = ( ⇤, ⇤))



74 Chapter 4. Biclustering Methods for Computer Network Data

For each server y, the empirical beta distribution is specified with the following
mean and variance:

µ =
a

a+ b
= py, �

2 =
ab

(a+ b)2(a+ b+ 1)
=

py(1� py)

|Y |
. (4.8)

The corresponding a and b parameters of the beta distribution can be calculated
by solving (4.8) with respect to a and b. The same rationale holds when clustering
the server set, where observing servers receiving authenticated connections from
high-degree clients may not be informative about the server profile. In this case,
py in (4.8) can be replaced by the proportion of servers receiving authenticated
connections from client x, denoted px.

4.2 Flat clustering methods

In contrast to hierarchical clustering, which creates a hierarchy of clusters, flat
clustering methods create a flat partition of clusters without any explicit structure
that relates the clusters to each other. In these partitional methods, data points
are moved from a cluster to another until, conditional on some criterion, there are
no further possible improvements. When the criterion used is the sum-of-square,
iterative partitioning coincides with k-means clustering (MacQueen, 1967). k-
means is the most traditionally used flat clustering algorithm, mainly due to its
simplicity. However, a major drawback of this algorithm is that it cannot separate
clusters which are non-linearly separable in the input space. A modified version
of k-means, known as kernel k-means, has emerged to tackle this problem. In this
reformulation, the data points are first transformed from input space to a new,
possibly higher-dimensional space using a nonlinear function, and subsequently
standard k-means clustering is performed in the new space. Kernel k-means is
closely related to spectral algorithms (see Dhillon et al. (2004)), which can also
overcome this problem by using graph cuts as objective functions for nonlinear
data separation.

Spectral clustering (Von Luxburg, 2007; Zhang and Jordan, 2008) is a flexible



4.2. Flat clustering methods 75

flat clustering approach that makes few assumptions on the shape of the clusters.
This method has proved to outperform k-means, which may often not be able to
find a globally optimal partition, since it relies on randomly chosen initial centers.
In spectral clustering, the data are represented as a similarity graph where data
points are nodes and the edge-weights are pairwise similarities between points. The
partition algorithm finds a k-way graph cut by firstly finding a spectral embed-
ding through an eigenvalue decomposition of a Laplacian data matrix, and then
based on this embedding a partition is found via a simplified clustering algorithm
such as k-means. A nice review of several algorithm variants has been provided
by Weiss (1999). When the eigenvalue decomposition operates on the standard
adjacency matrix, rather than one of its Laplacian, spectral clustering coincides
with singular value decomposition (SVD). Thus, the two embedding are strongly
related, although they may emphasise different aspects of the graph under analy-
sis. Both SVD and spectral clustering perform dimensionality reduction, allowing
the extraction of an optimal lower-dimensional description of the data matrix, yet
preserving the principal signal of association between data points.

The extension of spectral clustering to biclustering problems has been mainly
introduced by Kluger et al. (2003) for analysing microarray cancer data sets and by
Dhillon et al. (2004) and Cho et al. (2004) for bipartitioning word-document data
matrices. Biclustering through singular value decomposition and spectral cluster-
ing are described in the following subsections. Both methods use k-means as a final
step for extracting clusters from the eigenvectors of the spectral decompositions.

4.2.1 Biclustering via singular value decomposition

Singular value decomposition (SVD) provides a convenient method for factorising
a matrix. Given the previously introduced adjacency matrix A, the SVD of A can
be written as

A = U⌃V T =
rX

k=1

skukvk
T
, (4.9)

where r is the rank of A, U = (u1, . . . , ur) is a matrix of orthonormal left singular



76 Chapter 4. Biclustering Methods for Computer Network Data

vectors, V = (v1, . . . , vr) is a matrix of orthonormal right singular vectors and ⌃ =

diag(s1, . . . , sr) is a diagonal matrix of positive singular values s1 � s2 � · · · � sr.
The adjacency matrix A is therefore decomposed into a summation of rank-one
matrices skukvk

T , also called SVD layers.

As pointed out by Busygin et al. (2008), biclustering can be related to the SVD
by considering an idealised block diagonal data matrix with blocks representing
biclusters and zero elements outside the blocks:

A =

0

BBBBB@

A1 0 . . . 0

0 A2 0 . . .

...
... . . . 0

0 0 . . . Ar

1

CCCCCA
.

After performing SVD on A, each block submatrix Ak, k = 1, . . . , r, is associ-
ated with a singular vector pair (uk, vk), such that non-zero components of uk

correspond to rows occupied by Ak and non-zero components of vk correspond to
columns occupied by Ak. In this way, it is natural to associate each block with
a bicluster. Although in real applications we do not have perfect block data ma-
trices, the SVD can still detect the rows and columns of the sub-matrices as the
dominating coefficients in the singular vector pair. This makes SVD a suitable
biclustering tool.

Applications generally focus on SVD layers with large eigenvalues (signal) while
the remaining layers can be discarded as non-informative noise. Therefore, if we
just consider the first K  r rank-one matrices in (4.9), we obtain a rank-K
approximation (or truncated SVD) to A:

A ⇡ A
(K) =

KX

k=1

skukvk
T
, (4.10)

and the matrix A
(K) gives the best rank-K matrix approximation to A with respect



4.2. Flat clustering methods 77

to the squared Frobenius norm (Eckart and Young, 1936), i.e.

A
(K) = arg min

A⇤2AK
kA� A

⇤
k
2
F = arg min

A⇤2AK
tr{(A� A

⇤)(A� A
⇤)T }, (4.11)

where AK is the set of all |X| ⇥ |Y | matrices of rank K and k·k2F indicates the
squared Frobenius norm. In this case, the decomposition gives an embedding of
the nodes of the graph as vectors in a lower dimensional space.

Neglecting all but the first K components can be justified when the noise in
the data perturbs the small eigenvalues, whereas the first K components capture
the signal of the data. For this reason, selecting the threshold value K represents a
central problem of truncated SVD. Furthermore, in the clustering setting choosing
the value of the parameter K corresponds to choosing the number of clusters. A
standard criterion for choosing K is to look for where the last large gap or elbow
appears in a plot of singular values (Hoff, 2007), also referred to as scree plot, and
subsequently applying k-means to extract clusters from the eigenvectors.

In a bipartite computer network graph, U represents a low-rank matrix of
IP addresses of clients in latent space, V represents a low-rank matrix of IP ad-
dresses of servers in a latent space, and the best K-dimensional representation of
X through U and V is given by taking the first K singular values from the SVD.
This is illustrated in a cartoon in Figure 4.1. Biclustering is obtained by extracting
clusters via k-means from both the eigenvectors of U and the eigenvectors of V . In
k-means clustering, we are given a set of n data points in d-dimensional space Rd

and an integer k, representing the number of clusters fixed a priori. The algorithm
aims to partition the n points into a set of k points in Rd, called centers, which
minimise the mean squared distance from each data point to its nearest center.
Here, we aim to partition the |X| clients and the |Y | servers in a K-dimensional
space into k = K clusters, where K is the rank of U and V obtained via the
truncated SVD decomposition in (4.10).



78 Chapter 4. Biclustering Methods for Computer Network Data

C
lie

nt
s

Servers

C
lie

nt
s

K ⌧ |Y |

K
⌧

|X
|

Servers

Figure 4.1: A cartoon describing how to transform the adjacency matrix of a
computer network graph into lower dimensional representations for clients and
servers.

4.2.2 Spectral biclustering

Spectral clustering approaches are closely related to singular value decomposition
as they also use the information contained in the eigenvectors and eigenvalues of a
suitable matrix representation of a graph to perform dimensionality reduction be-
fore clustering in fewer dimensions. The spectral biclustering embedding is similar
to the one used in SVD presented in the previous section, but rather than operating
directly on the adjacency matrix it operates on the Laplacian transformation.

Specifically, spectral biclustering uses SVD on the bipartite graph Laplacian
matrix L = D � A, where D = (Dxy) is a diagonal degree matrix with Dxx =
P

m Axm. Spectral approaches operate on L or normalised variants of L to partition
the graph recursively. An optimal bisection is found at each step with respect to
an optimisation function based on Laplacian eigenvectors (Pothen et al., 1990).
A detailed description of spectral clustering is provided by Von Luxburg (2007),
while a commonly used extension to biclustering can be found in Dhillon (2001)
and (Cho et al., 2004). Let DX and DY be diagonal matrices of the row and
column sums of A, respectively equal to the outdegrees of clients and indegrees of
servers. Here, the spectral biclustering algorithm calculates a truncated-singular
value decomposition of the normalised Laplacian

D
�1/2
X AD

�1/2
Y . (4.12)



4.3. Simulation study 79

In this context, the left singular vectors of (4.12) correspond to the clients
projected in a K-dimensional latent space, and similarly the right singular vec-
tors correspond to K-dimensional latent positions for the servers. Once again,
performing k-means on these latent positions yields cluster configurations of the
clients and the servers.

4.3 Simulation study

4.3.1 Simulated data

We simulated 100 cluster configurations with the purpose of evaluating the effec-
tiveness of the methods presented above. Three different data structures, which
are known to potentially influence the algorithms, have been generated and anal-
ysed. The first data structure takes the form of a 100 ⇥ 100 square data matrix,
the second is a 1000⇥ 100 matrix, while the third is a 1000⇥ 100 matrix. Exam-
ples of the three generated data matrix can be found in Figure 4.3. The structure
determines the size of the data matrix and the form of the clusters. The number of
clusters and their sizes were generated uniformly at random. As previously men-
tioned, computer networks have very skewed degree distributions which should be
reflected in the simulated data: for high degree server groups, client clusters need
to be created such that most client clusters have a high probability of connection,
but a small proportion have a very low probability of connection. Similarly, for low
degree server groups, client clusters need to be created such that most client clus-
ters have a low probability of connection, but a small proportion have a very high
probability of connection. This can be achieved by drawing the bicluster-specific
parameters ✓ from beta distributions with ‘extreme’ parameter values. Specifi-
cally, we choose a beta with parameters ↵ = 10 and � = 1 for the high degree
servers and ↵ = 1 and � = 10 for the low degree servers. Figure 4.2 shows the
beta probability density functions on varying the parameter values.



80 Chapter 4. Biclustering Methods for Computer Network Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

✓

f
(✓
)

Beta(1,10)
Beta(10,1)

Figure 4.2: Probability density function of beta distributions with parameters
↵ = 10, � = 1 for the high degree servers and ↵ = 1, � = 10 for the low degree
servers.

4.3.2 Results

Simulated data are used to compare the model-based agglomerative biclustering
algorithms with spectral and singular value decomposition biclustering approaches.
Several scores are calculated to evaluate the cluster configurations returned by the
algorithms against the true configurations. In particular, we use the three following
scores, which compare a known target bicluster, A, with a retrieved bicluster, B
(Turner et al., 2005):

Sensitivity =
gA\B

gB
⇥

sA\B

sB
, (4.13)

Specificity =
gA\B

gA
⇥

sA\B

sA
, (4.14)

F1 measure =
2(gA\B)(sA\B)

nA + nB
, (4.15)

where gC is the number of rows in cluster C, sC is the number of columns in cluster
C and nC = gCsC is the number of data points corresponding to C.



4.3. Simulation study 81

(a) 100⇥100 data matrix (b) 100⇥1000 data matrix (c) 1000⇥100 data matrix

Figure 4.3: Simulated data matrix heatmaps, for three different matrix sizes, where
the grayscale corresponds to different cluster parameters.

Sensitivity measures the proportion of the identified cluster B which is con-
tained in the target cluster A, while specificity measures the proportion of A that
has been retrieved in B. The F1 measure (Strehl, 2002) is the harmonic mean of
the sensitivity and specificity, giving an overall measure of cluster quality. For each
identified cluster, the cluster with the highest mean score across all three measures
is assumed to be the known cluster and then a score for the whole configuration
quality is obtained by calculating a weighted mean value, with weights given by
the size of the identified clusters. Finally, a zero score is given in case a method
detects no clusters.

The measures discussed so far do not evaluate the fact that agglomerative
clustering produces a nested sequence of clusters. This aspect is evaluated using the
so-called dendrogram purity score (Heller and Ghahramani, 2005), which measure
how well a dendrogram clusters the known labels. This measure is calculated
by randomly selecting two observations belonging to the same cluster in the true
configuration and then finding the first cluster in the hierarchy which contains
both the observations. Finally, the fraction of observations in this cluster which
are also in the true cluster is calculated: the expected value of this proportion is
the dendrogram purity. Note that the purity is 1 if and only if all observations in
each group are contained in some pure cluster.

For agglomerative model-based iterative biclustering, informative beta prior
distributions were used for the probability parameter ✓. In particular, an empiri-



82 Chapter 4. Biclustering Methods for Computer Network Data

cal beta prior was built for each server when clustering the client set and for each
client when clustering the server set, as described in Section 4.1.7, and the per-
formance of the algorithm was compared with respect to a flat beta prior choice,
i.e. choosing a = b = 1 in (4.2). Table 4.1 shows the mean score values from ap-
plying each clustering method to the 100 simulated cluster configurations, under
the three different data matrix sizes. The naive model-based algorithm with flat
beta priors showed poor performance, confirming a flat prior not to be suitable
in this context. Simultaneous model-based agglomerative biclustering, where the
similarity measure is recalculated after each row or column merge, was also used
to provide a comparison with the iterative version proposed. This was possible
due to the relatively small size of the simulated matrices analysed.

Changing the data structure has an effect on the performance of the algo-
rithms but results show a good overall performance. In particular, model-based
biclustering algorithms perform well, mainly correctly identifying the true cluster
configuration in all the three data structures, as demonstrated by the high F1

values and high purity. Spectral and SVD approaches are able to identify some
clusters correctly, but the performance scores are always lower than the scores
obtained by using agglomerative model-based algorithms. In particular, they both
have a lower sensitivity than specificity score which indicates that although the
clusters identified may contain the true clusters, they also contain other elements.
Purity scores are not available for those two flat clustering methods, as no cluster
hierarchy is created. SVD biclustering always achieves higher scores than spec-
tral biclustering. Furthermore, the performance of the spectral methods is poorer
when using large, but square data matrices, whereas agglomerative model-based
algorithms achieve better results. Specifically, agglomerative model-based itera-
tive biclustering always converged in less than ten iterations and performs well
also in the case of highly imbalanced dimensionality, i.e. when |X| ⌧ |Y |. Since
the number of rows and columns is not equal, there may be an initial algorith-
mic preference towards one type of merge. Furthermore, the algorithm can suffer
from a known property of agglomerative clustering, i.e. a strong tendency for clus-
ters included in the most recent merge to again be included in the next (Heard,



4.3. Simulation study 83

2011). As expected, the mean purity for the hierarchies created under model-based
simultaneous biclustering is slightly higher than the mean purity score for the hi-
erarchies created using the modified iterative form. However, this comes at the
cost of higher computational load, which would not be feasible when using larger
real computer network data matrices.

Finally, Figure 4.4 shows the algorithm runtimes to evaluate computational
efficiency at varying the matrix dimension and dimensionality imbalance. Each
slope line indicates the order of the runtime polynomial. As expected, model-
based simultaneous biclustering has higher runtimes, since for each iteration, the
similarity measure needs to be recalculated for all pairs of column clusters after
a merge of two row clusters, and vice versa for column clusters mergers. Our
modified version, ie. model-based iterative biclustering, scales better, potentially
making its usage more feasible in the context of large-scale systems.



84 Chapter 4. Biclustering Methods for Computer Network Data

100 ⇥ 100 100 ⇥ 400 100 ⇥ 700 100 ⇥ 1000
0

1,000

2,000

3,000

T
im

e
(s

ec
)

Model-based iterative Biclustering
Model-based simultaneous Biclustering

Spectral Biclustering
SVD Biclustering

100 ⇥ 100 400 ⇥ 100 700 ⇥ 100 1000 ⇥ 100
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Matrix size

T
im

e
(s

ec
)

Figure 4.4: Algorithm runtimes (seconds) vs. data matrix dimension.



4.3. Simulation study 85

M
ea

su
re

M
et

ho
d

D
at

a
St

ru
ct

ur
e

|U
|
⇥

|C
|
=

10
0
⇥
10
0

|U
|
⇥

|C
|
=

10
00
⇥
10
0

|U
|
⇥

|C
|
=

10
0
⇥
10
00

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(fl
at

pr
io

r)
0.

58
1

0.
38

2
0.

57
9

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(in
fo

rm
at

iv
e

pr
io

r)
0.

86
1

0.
88

2
0.

92
9

M
od

el
-b

as
ed

Si
m

ul
ta

ne
ou

s
B

ic
lu

st
er

in
g

0.
92

2
0.

96
1

0.
93

8
Sp

ec
tr

al
B

ic
lu

st
er

in
g

0.
67

4
0.

54
2

0.
55

3
Se

ns
iti

vi
ty

SV
D

B
ic

lu
st

er
in

g
0.

69
9

0.
70

0
0.

72
1

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(fl
at

pr
io

r)
0.

38
4

0.
26

1
0.

41
3

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(in
fo

rm
at

iv
e

pr
io

r)
0.

88
4

0.
91

1
0.

91
9

M
od

el
-b

as
ed

Si
m

ul
ta

ne
ou

s
B

ic
lu

st
er

in
g

0.
91

6
0.

95
7

0.
95

1
Sp

ec
tr

al
B

ic
lu

st
er

in
g

0.
59

3
0.

50
7

0.
62

4
Sp

ec
ifi

ci
ty

SV
D

B
ic

lu
st

er
in

g
0.

70
2

0.
69

1
0.

72
1

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(fl
at

pr
io

r)
0.

48
3

0.
32

2
0.

47
8

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(in
fo

rm
at

iv
e

pr
io

r)
0.

88
4

0.
90

8
0.

93
4

M
od

el
-b

as
ed

Si
m

ul
ta

ne
ou

s
B

ic
lu

st
er

in
g

0.
90

8
0.

96
2

0.
95

8
Sp

ec
tr

al
B

ic
lu

st
er

in
g

0.
63

3
0.

53
7

0.
58

4
F

1
M

ea
su

re

SV
D

B
ic

lu
st

er
in

g
0.

68
9

0.
72

0
0.

75
3

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(fl
at

pr
io

r)
0.

55
1

0.
54

6
0.

50
7

M
od

el
-b

as
ed

It
er

at
iv

e
B

ic
lu

st
er

in
g

(in
fo

rm
at

iv
e

pr
io

r)
0.

88
4

0.
91

1
0.

91
9

M
od

el
-b

as
ed

Si
m

ul
ta

ne
ou

s
B

ic
lu

st
er

in
g

0.
85

7
0.

87
5

0.
90

8
Sp

ec
tr

al
B

ic
lu

st
er

in
g

-
-

-
Pu

rit
y

SV
D

B
ic

lu
st

er
in

g
-

-
-

Ta
bl

e
4.

1:
Q

ua
lit

y
m

ea
su

re
s

fo
r

ea
ch

al
go

rit
hm

ov
er

sim
ul

at
ed

da
ta

,f
or

di
ffe

re
nt

da
ta

m
at

rix
siz

es
.



86 Chapter 4. Biclustering Methods for Computer Network Data



Chapter 5
A client model for the identity of new

edges

While the work on new edges presented in Chapter 3 was focused on modelling
the rate of occurrence, in this chapter we seek to model and predict the identity of
the new edges formed by each client. Specifically, we need a reliable and scalable
model to monitor the characteristics of each new edge observed, on the basis
of past behaviour of each network host. This could allow us to categorise new
edges according to the different types of observed behaviour. As described in
Chapter 4, computer networks tend to exhibit an underlying cluster structure,
where nodes are naturally grouped together based on similar connection patterns.
What constitutes normal behaviour might strongly differ between network hosts,
and so inferring these peer groups constitutes an important step in modelling the
types of new connections a client would make. If we observe a client forming a new
edge, the question here is whether there are other similar clients which also share
that connection. Other than revealing hidden network structure, such information
about shared connectivity can be predictive of similar future interactions, thus
aiding the problem of new edge prediction.

Towards this end, a notion of similarity is here built through a clustering model
which partitions the client set into groups of clients sharing a similar connection

87



88 Chapter 5. A client model for the identity of new edges

behaviour. This could give us a first indication of whether introducing informa-
tion about the clustered network structure in the model can aid its predictive
performance. This similarity measure will be further extended in Chapter 6 for
measuring if similar clients may be more likely to connect to similar servers, which
will be thus seen as a biclustering problem.

The method presented in this chapter is based on a sequential two-step Bayesian
inference procedure to infer client cluster configurations while simultaneously mod-
elling new edge formation. A Bayesian agglomerative model-based clustering al-
gorithm is used as a first step of the analysis, with the purpose of identifying
an initial, reliable cluster configuration of clients sharing similar connection be-
haviour. Subsequently, the identity of new edges is modelled through a Bayesian
Cox proportional hazards model, where the initial cluster configuration and the
model coefficient parameters are jointly updated with MCMC, to improve the pre-
dictive performance of the initial configurations. The procedure is then repeated
sequentially following a linear updating scheme, as new data arrive. Parts of the
work presented here can also be found in Metelli and Heard (2016).

The remainder of this chapter is organised as follows: Section 5.1 introduces
a Bayesian proportional hazards model for new edges and describes the surrogate
clustering model used to infer initial cluster configurations. Posterior inference is
described in Section 5.2 while the main results are shown and discussed in Section
5.3.

5.1 Bayesian proportional hazards client model for

new edges

From the start of an observation period of a computer network, new connections
from clients to server computers are observed, each adding a new edge to the
bipartite graph. Let (t01, (x

0
1, y

0
1)), . . . , (t

0
n, (x

0
n, y

0
n)) be the realised time-ordered

sequence of new (client, server) edges observed in the network graph. We model
new edge formation over time as a Cox proportional hazards model (Cox, 1972)



5.1. Bayesian proportional hazards client model for new edges 89

with time-dependent covariates. This model conveniently integrates the benefits of
non-parametric and parametric approaches to statistical inference by dividing the
hazard into a non-parametric part, namely the baseline hazard and a parametric
part, namely the covariate effects.

The hazard for observing a new connection between a particular client x and
server y at time t is modelled as the product of a baseline hazard and the ex-
ponential of a linear combination of the covariates. In this context, one relevant
time-varying covariate is the indegree of the server, which provides a measure of
‘popularity’ for each server. The population of servers in an enterprise computer
network typically has a heavily right-skewed degree distribution, with a small num-
ber of servers having a very high indegree, meaning they are connected to by most
clients. In particular, we include two different degree effects: one representing the
indegree of server y measured on the overall network graph at time t, denoted
N

�
y (t), and one representing the indegree of servers amongst a subset C of clients

considered to be similar to the client x in question, denoted N
�
C,y(t). These two

variables have been already defined in (2.8) and (2.10). The idea is that if many
of the clients with similar connection patterns to client x also connect to server y,
then perhaps it is more likely that x will form a connection with y. This allows
us to account for cluster-specific effects, which could be fundamental to improving
the predictive ability of the model. As previously detailed in Section 4.1.2, clus-
ters are defined as subsets of X and a cluster configuration = {C1, . . . , CK} is a
partition of X into such subsets. Note that we only focus on clustering the client
set for computational simplicity, while in the following chapter we will account for
both client and server clustering.

In a slight abuse of notation, let (x) 2 be the unique cluster containing
client x. Following the notation used in (2.10), we define the cluster-specific degree
covariate for server y as

N
�
y| (x)(t) =

X

n�1

[0,t)(t
0
n) y(y

0
n) (x)(x

0
n). (5.1)



90 Chapter 5. A client model for the identity of new edges

Note that N
�
y (t) ⌘ N

�
X,y(t). As we are interested in model the identity new

edges for each client x, let rx(t) be the non-negative baseline intensity of new edge
formation for client x. Then, for a client x 2 X and a server y 2 Y , the hazard
function takes the following form

�xy(t) = rx(t) exp{↵N
�
y (t) + �N

�
y| (x)(t)}⇥ (X⇥Y )\Gt{(x, y)}. (5.2)

The baseline hazard rx(t) is here treated as a nuisance parameter for each
client, which does not affect model inference. Whilst this assumption will not fully
hold in practice, it provides a vital inferential simplification as proposed in Cox
(1972). Note that in this setting, treating rx(t) as a nuisance implies that we focus
on a client-level analysis, with anomaly detection defined relative to the individual
level, rather than the entire network graph. The latter case will be considered
later in Chapter 6.

5.1.1 Conditional Bayesian likelihood-based inference

We condition on the event times T
0 of (T 0

, E
0) and work with the conditional

likelihood of the event marks E
0
|T

0. The conditional likelihood is here calculated
sequentially as the product of predictive probabilities for the identities of each new
edge, given the corresponding event time and the previous edges formed so far.

Given the sequence of time-ordered edges (t01, e
0
1), . . . , (t

0
n�1, e

0
n�1), the predic-

tive distribution for the nth new edge is given by

PE0
n
{(x, y)|(t01, e

0
1), . . . , (t

0
n�1, e

0
n�1), t

0
n} =

�xy(t0n)

�(t0n)

=
exp{↵N

�
y (t0n) + �N

�
y| (x)(t

0
n)}X

(x0,y0)/2Gt0n

exp{↵N
�
y0 (t0n) + �N

�
y0| (x0)(t

0
n)}

. (5.3)

Then, after observing n time-ordered edges (t01, e
0
1), . . . , (t

0
n, e

0
n), the conditional



5.1. Bayesian proportional hazards client model for new edges 91

likelihood is simply given by the product of these predictive probabilities,

P(E 0
|T

0
,↵, �, ) =

nY

i=1

PE0
i
{(x0

i, y
0
i)|(t

0
1, e

0
1), . . . , (t

0
i�1, e

0
i�1), t

0
i}

=
nY

i=1

exp{↵N
�
y0
i
(t0i) + �N

�
y0
i| (xi)

(t0i)}X

(x0,y0)/2Gt0i

exp{↵N
�
y0 (t0i) + �N

�
y0| (x0)(t

0
i)}

. (5.4)

Here, ↵ 2 R, � = (�1, . . . , �K) 2 RK and K is the total number of clusters in .
This so-called ‘partial’ likelihood allows for estimation of covariates of the model
without any restrictions placed on the baseline hazard.

A Bayesian formulation of the model requires the specification of prior distri-
butions, in order to obtain the joint posterior distribution P(↵, �, |T

0
, E

0) of the
Cox model parameters and the cluster configuration. We choose standard normal
distributions for the parameters ↵ and � and we assume exchangeability when
specifying a prior for the cluster configuration so that a priori no two observa-
tions are more likely to belong to the same cluster. Specifically, we use a uniform
distribution over the space of all possible cluster configurations. Alternatively, a
Dirichlet process prior could be employed (Kim et al., 2006). Given the model
likelihood provided in Eq. (5.4) and prior distributions P(↵), P(�| ) and P( ) for
↵, � and , the joint posterior distribution is then given by

P(↵, �, |T
0
, E

0) / P(T 0
|E

0
,↵, �, )P(�| )P( )P(↵). (5.5)

As for most Bayesian models, exact inference is intractable, so Markov Chain
Monte Carlo (MCMC) is required to perform posterior inference. The MCMC
sampling scheme used is introduced in Section 5.2, while Bayesian model-based
agglomerative clustering, as previously described in Section 4.1.1, is used as a
surrogate clustering model to infer some initial cluster configurations. This gives
us a simpler model that nonetheless provides an initial cluster configuration for
(5.5) which can then be further updated according to the proportional hazards
model, as described below.



92 Chapter 5. A client model for the identity of new edges

5.2 Sequential two-step inference

The main inference procedure for the Cox model posterior distribution in (5.5)
consists of two steps, embedded in a sequential updating scheme for computational
tractability. The entire data set is divided into segments of equal length and
the following procedure is repeated sequentially as new data arrive. Firstly, we
perform agglomerative clustering (AC) as described in Section 4.1.2, and then we
use MCMC sampling to simultaneously update the cluster configuration and the
parameters of the Cox model presented above.

An initial cluster configuration of the first segment of data is obtained via AC;
subsequently, this configuration is updated via MCMC, jointly with Cox model
parameters. The new cluster configuration is passed back to the AC step and a
new data segment is added, where each data point is processed sequentially as
described below; this results in an extended configuration which is then updated
through MCMC. The procedure is repeated until the all data have been processed.

This two-step updating scheme provides a way for obtaining a good starting
cluster configuration for the MCMC sampler. Although the simultaneous sampling
of Cox model parameters and cluster configurations is fundamental for improving
clusters predictive performance, MCMC algorithms can strongly depend on the
initial values assigned to the chain. The agglomerative clustering step is therefore
introduced for providing a deterministic initial cluster configuration, to achieve
subsequent MCMC convergence quickly. This proves to be necessary because of
the size of the clustering problem considered, where assigning random initial con-
figurations could irreparably affect the convergence of the chain. The two different
inference steps are described below.

5.2.1 Agglomerative clustering step

Agglomerative clustering under the surrogate model described in Section 4.1.1 is
used to infer an initial cluster configuration. Although this algorithm generally
provides a fast and efficient deterministic procedure for small data sets, large com-



5.2. Sequential two-step inference 93

puter networks carry a higher computational burden. We achieve computational
saving by performing agglomerative clustering on a small initial segment of the
entire data set, and then sequentially processing the remaining data. Each sub-
sequent data point is added one at a time, initially as a new singleton cluster k

0

and then a possible merger with each previously created cluster k is evaluated on
the basis of the similarity measure Skk0 in (4.4). In this way, re-evaluation of all
pairwise similarities is not required, providing a significant improvement in terms
of computational speed.

5.2.2 MCMC step

The Metropolis-Hastings (M-H) algorithm, which has been described in Section
3.1.1, is used to draw approximate samples from the joint posterior distribution
in (5.5) of the Cox model parameters ↵, � and the cluster configuration . The
scheme used to sample Cox model parameters and cluster configurations is briefly
presented below.

Let ↵t, �t and t be the values of the parameters ↵, � and cluster memberships
in , at stage t+1 of the algorithm, with probability 0.5 a new value �⇤

i is proposed
for a uniformly sampled component i, conditional on the current value �

t
i , from a

normal distribution N(�t
i , �

2), with scaling parameter �. Let �⇤ be equal to �
⇤
i at

position i, and equal to �
t everywhere else. By symmetry of the normal proposal

density, the proposed vector �
⇤ is accepted with probability

min
✓
1,

P(�⇤
,↵

t
,

t
|T

0
, E

0)

P(�t,↵t, t|T 0, E 0)

◆
. (5.6)

Similarly for ↵, a new proposed value ↵
⇤ is accepted with probability

min
✓
1,

P(↵⇤
, �

t
,

t
|T

0
, E

0)

P(↵t, �t, t|T 0, E 0)

◆
. (5.7)

For cluster allocations, with probability 0.5 we randomly choose a client x 2 X

with current cluster label t(x), and propose a new cluster label ⇤(x) from a



94 Chapter 5. A client model for the identity of new edges

discrete uniform proposal distribution over the integer set {1, . . . , Kt+1}/{ t(x)},
where K

t is the current number of client clusters in t. The proposed value ⇤(x)

suggests a new cluster configuration ⇤ with K
⇤ client clusters. If | t(x)| = 1 and

⇤(x) 6= K
t + 1, then K

⇤ = K
t
� 1; or else if | t(x)| > 1 and ⇤(x) = K

t + 1,
then K

⇤ = K
t +1. In both of these cases, the dimension of the parameter �t must

change. Initially we set �
t = �

⇤, but if K⇤ = K
t
� 1 then the t(x) component

�
⇤
t(x) is deleted, and if K

⇤ = K
t + 1 then a new component �

⇤
K⇤ is proposed

from the standard normal prior. Then taking, for example, the most common
case where K

⇤ = K
t, the resulting cluster configuration and parameter vector are

accepted with probability

min
✓
1,

P(↵t
, �

t
,

⇤
|T

0
, E

0)Kt

P(↵t, �t, t|T 0, E 0)K⇤

◆
. (5.8)

5.3 An application to LANL computer network au-

thentication data

The procedure proposed in Section 5.2 was applied to the first 10,000 distinct
network authentication events (Kent, 2014) of the 2014 LANL data sets, which has
been previously described in Section 2.2.1. Segments of 1000 unique authentication
events were added at each sequential updating step. Table 5.1 provides a summary
of some basic graph statistical quantities of interest for the subset of data analysed,
while Figure 5.1 shows a log-log plot of the indegree distribution of the server
computers over those 10,000 events. The degree distribution appears to follow a
power law, with the majority of the servers having only one authenticated client
and only a few servers having high degree.

For agglomerative clustering, informative beta prior distributions were used
for the probability parameter ✓ as described in Section 4.1.7. For MCMC, the
Metropolis-Hastings algorithm was used with a total number of iterations set to
5,000, after a burn-in period of size 1000.

Figure 5.2 shows the number of identified clusters during the MCMC run: the



5.3. An application to LANL computer network authentication data95

Events 10,000
Clients 1272
Servers 1432
Min server degree 1
Mean server degree 1.86
Max server degree 93

Table 5.1: Summary statistics for the subset of data analysed.

1 10 100
1

10

100

1,000

Degree

Fr
eq

ue
nc

y

Figure 5.1: Frequency distribution of computer degrees (log-log scale).

most probable number of clusters is K = 6. Conditional on the most probable
configuration with 6 clusters, Table 5.2 shows posterior means, standard deviations
and 95% highest posterior density (HPD) credible intervals for the coefficients of
the covariates, i.e. an overall degree effect ↵ and cluster-specific degree effects
�. The estimated coefficients are all positive, indicating that a high computer
degree strengthens the probability of a new client establishing a connection to
that computer, particularly when clients with similar connectivity patterns have
also connected to that server. In addition, the effect is stronger for �1, �2 and �3,
which correspond to the largest clusters.



96 Chapter 5. A client model for the identity of new edges

Coefficient Mean 95 % HPD Credible Interval
Lower Upper

↵ 1.0601 1.0556 1.0746
�1 2.2532 2.1134 2.3987
�2 2.0145 1.9586 2.0709
�3 1.9753 1.8512 2.0802
�4 0.9643 0.8923 1.0465
�5 1.1112 1.0634 1.1534
�6 0.4367 0.3754 0.5183

Table 5.2: Posterior model coefficient estimates with credible intervals.

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Number of clusters (K)

Figure 5.2: Posterior distribution of the number of identified client clusters.

The heat map in Figure 5.3 shows the clustered adjacency matrix, where the
greyscale indicates different cluster allocations and the dendrogram reflects the
hierarchical structure created through agglomerative clustering. Within the six
client clusters identified, there are two dominant groups corresponding to the clus-
ters accounting for the highest posterior coefficient effects.

Furthermore, the appropriateness of the probability model used is investigated
through an analysis of the model’s predictive performance. Assessing the plausi-
bility of a posited model is an integral part of any statistical analysis and especially



5.3. An application to LANL computer network authentication data97

fundamental in the Bayesian framework, where prior knowledge is included in the
model.

Goodness-of-fit A principled way to evaluate a model is to analyse its out-of-
sample predictive performance. The validation process involves comparison of the
goodness-of-fit of models with a different number of covariates included. In par-
ticular, we analyse the predictive performance of three different models on 1,000
out-of-sample authentication events from the LANL data set. Table 5.3 shows a
comparison of the three following models:

• Model 1: �xy(t) = 1, (↵ = 0, � = 0)

• Model 2 : �xy(t) / exp{↵N
�
y (t)}, (� = 0)

• Model 3: �xy(t) / exp{↵N
�
y (t) + �N

�
y| (x)(t)}

The first model represents a null model where the probability of establishing
a new connection is the same for each server. In the second model, the overall
degrees of the servers are included while the third saturated model includes both
overall and cluster-level effects. In this way, we are able to assess the contribu-
tion of including cluster information into our model. Furthermore, the analysis
was repeated without updating the initial agglomerative clustering configuration
jointly with Cox model parameters, in order to evaluate the improvement in the
predictive performance of MCMC-based clusters. Comparisons were obtained by
using the ratio of the averaged marginal likelihood, over the MCMC samples, for
each pair of models. Note that the marginal likelihoods of Model 1 and Model 2
are each invariant to the cluster configuration.

The results show a significant improvement in the predictive performance of
Model 3 with respect to both the null model and Model 2, suggesting there is
a considerable contribution provided by the cluster-level covariates. Finally, the



98 Chapter 5. A client model for the identity of new edges

Comparison LR - not updated - LR - updated -
Model 3 vs Model 1 589.03 607.56
Model 3 vs Model 2 2.76 3.46

Table 5.3: Likelihood ratios for the different models.

cluster-degree effect is stronger when cluster configurations are updated jointly
with Cox model parameters, confirming an improved predictive performance of
the MCMC-based clusters.

Finally, convergence diagnostic is used to assess the performance of an MCMC
sampler by monitoring the convergence of the Markov chain to the stationary
distribution. Here a plot of the marginal likelihood for each MCMC iteration is
provided in Figure 5.4 in order to measure the goodness-of-fit of the saturated
model. The process appears stationary as the number of iterations increases.

0 1,000 2,000 3,000 4,000 5,000
�1.9

�1.8

�1.7

�1.6
·104

Iteration Number

Lo
g-

Li
ke

lih
oo

d

Figure 5.4: Log-likelihood vs. number of MCMC iterations, for the saturated
model.



5.3. An application to LANL computer network authentication data99

Figure 5.3: Adjacency data matrix heat map with cluster configuration identified.
The greyscale represents different cluster allocation.



100 Chapter 5. A client model for the identity of new edges



Chapter 6
An entire-network model for the intensity

of arrival of new edges

The model introduced in the previous chapter has proved to have good predictive
performance but does not allow to detect which client is responsible for causing
anomalous behaviour, thus offering in principle a weaker detection power. For this
reason, in this chapter we seek to extend the model taking a graph-level perspective
which also takes into account the fact that different clients might make a very
different number of new edges. This will offer a stronger detection power, with the
potential to be able to detect anomalies in which client is forming new edges as
well as which servers it is connecting to.

A robust model of new edge formation for the entire graph needs to capture
the rates at which individual client hosts form new edges and then it must predict
the identity of new edges formed by each client. After having devoted attention
to separately modelling these two components in Chapter 3 and Chapter 5 re-
spectively, in this chapter we propose a model which combines together these two
aspects. Specifically, we extend the model proposed in Chapter 5 by constructing
a richer, more robust semi-parametric Cox model for new edge intensity which
simultaneously addresses the rates at which the client forms new edges and any
underlying latent structural relationship between the clients and servers in the

101



102
Chapter 6. An entire-network model for the intensity of arrival of

new edges

network. In Chapter 5, we have seen the importance of introducing a notion of
similarity between clients in the model: this is here extended to take into account
that similar clients may be more likely to connect to similar servers. Two differ-
ent formulations of this similarity measure will be proposed: first, we will encode
cluster memberships under hard-thresholding similarly to Chapter 5 and then we
will use dot-products of respective latent feature positions under soft-thresholding.
Both models again allow us to examine whether shared connectivity can be predic-
tive of similar future interactions. Part of the work presented here is taken from
Metelli and Heard (2018).

The remainder of this chapter is organised as follows: Section 6.1 proposes a
framework for modelling the intensity of arrival of new edges, with the two specific
latent feature formulations outlined in Sections 6.2 and 6.3. Section 6.4 describes
posterior inference under both formulations and finally, results from real computer
network data are shown and discussed in Section 6.5.

6.1 A Bayesian Cox model for new edges for the

entire network

Similarly to the model presented in (5.2), new edge formation over time is modelled
as a Bayesian semi-parametric Cox model for the hazard function of each potential
(client, server) edge. Here, the shape of the baseline rate will be determined by a
function r(t) � 0 which is considered common to all network hosts and therefore
a seasonal nuisance parameter whose functional form does not affect the model
inference.

To incorporate the highly variable popularity of different client and server ma-
chines we now include both the time-varying outdegree of each client computer x,
N

+
x , and the indegree of each server computer y, N�

y , which have been respectively
defined in (2.7) and (2.8). As already mentioned, the population of servers has
typically a heavily right-skewed degree distribution and similarly, the outdegree
distribution of clients can also follow a power law for large degree values, although



6.1. A Bayesian Cox model for new edges for the entire network 103

very small outdegrees are less common. These observations have been illustrated
for real data in Figures 2.2 and 2.4.

Furthermore, in Chapter 3 we found the indicator variables Ix,1 (2.5) and Ix,2

(2.6) to be strongly significant predictors of the rate of occurrence of new edges
in a computer network. These two variables, which indicate whether the last
connection was new, or whether the last two connections were new, are therefore
included in the model.

Finally, we propose a family of covariates {Zxy(t)|(x, y) 2 X ⇥ Y, t � 0} rep-
resenting a general notion of attraction between clients and servers. This will be
the quantity of central interest for the remainder of the chapter and two alter-
native formulations will be considered in the next two sections: a hard-threshold
clustering model and a soft-threshold latent feature model.

Specifically, using the above described covariates, the intensity at time t for
observing a new connection between a client x 2 X and a server y 2 Y is given by

�xy(t) = r(t) exp{↵ · (N+
x (t), N�

y (t), Ix,1(t), Ix,2(t)) + �xy · Zxy(t)}

⇥ (X⇥Y )\Gt{(x, y)}, (6.1)

where Zxy(t) 2 Rk is a vector of length k > 0 quantifying the relative attraction
of client x to server y at time t. Note that the intensity (6.1) becomes zero once
the pair (x, y) have been observed. The coefficients ↵ = (↵1, . . . ,↵4) 2 R4 and
�xy 2 Rk for each (x, y) 2 X ⇥ Y .

The conditional intensity function for the counting process T
0 of new connec-

tions being made across the entire network is the double sum of (6.1) over X and
Y ,

�(t) = r(t)
X

x2X

X

y2Y

exp{↵ · (N+
x (t), N�

y (t), Ix,1(t), Ix,2(t)) + �xy · Zxy(t)}

⇥ (X⇥Y )\Gt{(x, y)}. (6.2)



104
Chapter 6. An entire-network model for the intensity of arrival of

new edges

The covariates N+
x (t), N�

y (t), Ix,1(t), Ix,2(t) have already shown in the previous
chapters to be informative about the rate of occurrence and the hazard of mak-
ing new edges and so we will treat the corresponding coefficients ↵ as nuisance
parameters. The important question here is whether, having accounted for these
intuitive covariates, we can find any underlying latent structure in the network
which can provide further information about which (client,server) pairs might be
more likely to connect. This aspect will be measured by the inferred magnitude of
the coefficients � = {�xy} in (6.1).

6.1.1 Conditional likelihood-based Bayesian inference

Similarly to Chapter 5, we condition on the event times of T
0 of (T 0

, E
0) and so we

work with the conditional likelihood of the event marks E
0
|T

0. Given time-ordered
edge sequence (t01, e

0
1), . . . , (t

0
n�1, e

0
n�1), the predictive distribution for the nth new

edge is given by

PE0
n
{(x, y)|(t01, e

0
1), . . . , (t

0
n�1, e

0
n�1), t

0
n} =

�xy(t0n)

�(t0n)

=
exp{↵ · (N+

x (t0n), N
�
y (t0n), Ix,1(t0n), Ix,2(t0n)) + �xy · Zxy(t0n)}X

(x0,y0)/2Gt0n

exp{↵ · (N+
x0 (t0n), N

�
y0 (t0n), Ix0,1(t

0
n), Ix0,2(t

0
n)) + �x0y0 · Zx0y0(t0n)}

. (6.3)

Then, the conditional likelihood after observing n time-ordered edges (t01, e01), . . . , (t0n, e0n)
is simply the product of the predictive probabilities in (6.3),

P(E 0
|T

0
,↵, �, {Zxy}) =

nY

i=1

PE0
i
{(x0

i, y
0
i)|(t

0
1, e

0
1), . . . , (t

0
i�1, e

0
i�1), t

0
i}

=
nY

i=1

exp{↵ · (N+
x0
i
(t0i), N

�
y0
i
(t0i), Ix0

i,1
(t0i), Ix0

i,2
(t0i)) + �x0

iy
0
i
· Zx0

iy
0
i
(t0i)}X

(x,y)/2Gt0i

exp{↵ · (N+
x (t0i), N

�
y (t0i), Ix,1(t

0
i), Ix,2(t

0
i)) + �xy · Zxy(t

0
i)}

. (6.4)

Standard normal prior distributions are then chosen both for components of ↵
and the free parameters of � = {�xy|(x, y) 2 X⇥Y }. We now describe in Sections



6.2. Cluster formulation 105

6.2 and 6.3 the two proposed constructions for {Zx,y|(x, y) 2 X ⇥ Y } and their
respective prior distributions.

6.2 Cluster formulation

The first proposal for constructing Zxy(t) is to build “peer group” clusters within
both X and Y , based on similarity in connectivity patterns. This will allow us
to account for bicluster effects and can be viewed as an extension of the covariate
(5.1) proposed in Chapter 5, which accounted for peer group clusters within the
client set X only.

Let = {C1, . . . , CL} be a partition of X, and = {S1, . . . , SM} a partition of
Y and let (x) 2 be the unique cluster containing client x, and (y) 2 be the
cluster containing server y. Recalling that N�

y| (x)(t) proposed in (5.1) represented
the outdegrees of servers restricted to client cluster (x), we define analogously
the indegrees of clients restricted to subsets of servers as

N
+
x| (y)(t) =

X

n�1

[0,t)(t
0
n) x(x

0
n) (y)(y

0
n), (6.5)

which represents the number of servers in (y) connected to by client x, prior to
time t. Then, we can define the attraction covariate for the pair (x, y) as

Zxy(t) =
⇣
N

+
x| (y)(t), N

�
y| (x)(t)

⌘
. (6.6)

For L � 1 client clusters and M � 1 server clusters, the specification (6.6) for
Zxy(t) implies LM free parameters for � = {�xy}, i.e. the effective dimension-
ality of � is reduced to the number of existing row and column clusters. These
coefficients are assigned independent standard normal priors. Note that under the
simpler model presented in Chapter 5, Zxy(t) ⌘ N

�
y| (x)(t), and this scenario will

later serve as a comparison for assessing the additional value of introducing server
clusters when presenting results in Section 6.5. To complete a Bayesian model
specification, the prior distributions for the clustering configurations and are



106
Chapter 6. An entire-network model for the intensity of arrival of

new edges

again assumed uniform over the space of all possible configurations.

Under the conditional likelihood (6.4), posterior inference is required for the
joint distribution of all unknown parameters,

P(↵, �, , |T
0
, E

0) / P(E 0
|T

0
,↵, �, {Zxy})P(↵)P(�| , )P( )P( ), (6.7)

Once again, exact inference is not analytically tractable and so MCMC is required
to perform posterior inference. The exact MCMC sampling scheme employed can
be found in Section 6.4, while below we describe a spectral clustering approach
used to provide initial cluster configurations for both clients and servers to seed
the MCMC sampling algorithm.

6.2.1 Surrogate spectral biclustering model

The commonly used spectral biclustering algorithm of Dhillon (2001) and Cho
et al. (2004) described in Section 4.2.2 is used as surrogate clustering model to
infer an initial cluster configuration for both the clients and the servers in the
network. The left singular-vectors obtained from the spectral decomposition cor-
respond to the clients projected into a K-dimensional latent space, and similarly
the right singular vectors correspond to latent-space positions for the servers. We
then perform k-means clustering on these latent representations to extract initial
cluster configurations of the clients and the servers. This gives us a simpler model
that nonetheless provides an initial cluster configuration for (6.7) which can then
be further updated according to the Cox proportional hazards model, as further
described in Section 6.4.

As most clustering models, the model presented in this section takes a class-
oriented representation based on stochastic blockmodels (Nowicki and Snijders,
2001). The main limitation is to assume that there is a finite number of clus-
ters (classes) and that these classes entirely determine the structure of the graph.
Additional flexibility can be achieved by using the Dirichlet process (e.g. the Chi-
nese restaurant process, Pitman (2002)) to allow a potentially infinite number of



6.3. Latent feature formulation 107

clusters. However, this representation still limits each data point to one cluster,
whilst ideally we would like to learn a representation which allows for overlapping
clusters. Although computationally convenient, it may be statistically inaccurate
to assume that there exists a single partition that correctly characterises the ob-
served data. Therefore, a latent feature approach is explored in the next section,
with the purpose of increasing the flexibility of the generative process.

6.3 Latent feature formulation

Latent feature models increase the flexibility of class-oriented models by letting
each entity possess a (potentially unbounded) vector of latent features. These
models allow us to learn a compact representation where the observed as well as
the unobserved data can be explained through a small number of components.
Note that any latent class model can be represented as a latent feature model by
restricting each row to have only a single non-zero entry. Conversely, we could
also view a latent feature model as a latent class representation by constructing as
many different classes as the number of available features. For instance, supposing
that there are K features, we would need 2K classes to construct the analog of a
latent feature model with K features. Clearly, this would result in an exponential
growth of the number of clusters, making inference soon unfeasible.

One first class of latent feature models has been developed by (Hoff et al., 2005)
and (Hoff, 2009, 2002) in the field of social network analysis. There, they use real-
valued vectors as latent representations of the entities and the link probability
between two entities is determined by the similarity of their real-valued feature
vector. Then Miller et al. (2009) use instead a vector of binary features. The
number of features is assumed not to be known a priori and the Indian Buffet
Process (IBP) (Ghahramani and Griffiths, 2005) is used to determine the number
of latent clusters. For the remaining of this chapter, we will determine similarity
using real-valued latent feature and we will assume the number of features not to
be known a priori.



108
Chapter 6. An entire-network model for the intensity of arrival of

new edges

In Section 6.2.1, latent-space representations were used as data locations within
the clustering algorithm, for grouping together similar clients or servers. In this
representation, each client and each server of the network graph is associated with
a vector of latent features, with a common (but potentially unbounded) dimension
K < 1. The latent-space vectors for each client and each server of the network
graph are then combined by a simple dot-product to provide a score of attraction
between client and server. Two different scenarios for determining the number of
features and the subset of features selected will be explored. First, we will assume
the number of features to be unknown but finite, and then we will extend the
flexibility by allowing the vector of latent features to be potentially infinite. In
the latter case the Indian Buffet Process will be used. These two cases are now
described in Section 6.3.1 and 6.3.2.

6.3.1 The finite latent feature case

Let U = (u1, . . . , u|X|) 2 R|X|⇥K
, V = (v1, . . . , v|Y |) 2 R|Y |⇥K be matrices contain-

ing the K-dimensional, real-valued latent feature vectors for the client and server
computers respectively. Then the latent feature model score of attraction between
client x and server y is simply given by

Zxy(t) = ux · vy
T
. (6.8)

Note that (6.8) is fixed and not time-varying. Since the magnitude of the vectors
ux and vy provide a sociability effect for each client x or server y respectively, we
restrict the {�xy} regression coefficients to a single constant,

�xy = � (6.9)

implying just one free parameter � which is assigned a standard normal prior
distribution. Note that there is a slight identifiability issue between the free matrix
entries of U , V and the single coefficient �. However, the relative dimensionality
of the large matrices against a single scalar means that if the event data support a



6.3. Latent feature formulation 109

strong latent feature effect, under the chosen priors this will be reflected through
the parameter � which incurs just a single penalty.

Under this scenario, the subset of real-valued features selected U and V is
inferred via truncated-SVD. Conditional on U and V and given the conditional
likelihood (6.4), the joint posterior distribution of model parameters is given up
to proportionality by

P(↵, �|T
0
, E

0
, U, V ) / P(E 0

|T
0
,↵, �, U, V )P(↵)P(�). (6.10)

Details about model parameters inference will be given in Section 6.4, while
below we propose a truncated-SVD approach to infer latent positions U and V .

6.3.1.1 Truncated SVD

In Section 6.2, truncated-singular value decomposition was applied to a normalised
transformation (4.12) of the binary adjacency matrix A. Under this model formu-
lation, we propose to operate the SVD decomposition on a weighted adjacency
matrix whose (x, y) entry is an empirical estimate of the intensity of connections
between client x and server y. As later shown in Section 6.5, applying SVD on a
weighted adjacency matrix leads to better results than from using standard SVD
directly on A. The idea here is that the SVD decomposition is used as part of a
log-linear model for the intensity function (6.1) and so it is likely more suitable to
provide a covariate which is derived from the empirical estimate of the intensity
of connections in the graph.

From observing the arrivals of new connections over a time interval [0, T ], we
construct a |X| ⇥ |Y | matrix, denoted ⇤̂, where the (x, y) component ⇤̂x,y is an
estimate of the intensity in (6.1) obtained from a simple conjugate Bayesian model.
For the stochastic process of directed graphs {Gt|t � 0}, we can define a random
variable for the waiting time until the edge (x, y) is first observed as

Tx,y = inf
t

{t|(x, y) 2 Gt}. (6.11)



110
Chapter 6. An entire-network model for the intensity of arrival of

new edges

To specify our simple Bayesian model, we suppose Tx,y ⇠ Exp(⇤x,y), with
conjugate prior for the unknown intensity ⇤x,y ⇠ �(�, �). Correspondingly, after
having observed the evolution of Gt on [0, T ], we define

t̃xy =

8
<

:
Tx,y Tx,y  T

T Tx,y > T

(6.12)

to be either the observed value or else a right-censoring time, for (6.11). Then con-
ditioning on this observed value (6.12), the posterior distribution for the intensity
is simply

⇤x,y|t̃xy ⇠ �(� + [0,T ](txy), � + txy), (6.13)

which yields the posterior mean estimate for the (x, y) entry of ⇤̂,

⇤̂x,y =
� + [0,T ](txy)

� + txy
. (6.14)

Then, the truncated rank-K singular value decomposition of ⇤̂ is given by

⇤̂ ⇡ ⇤̂(K)
⌘ U⌃V T =

KX

k=1

skukvk
T
. (6.15)

Here, the left singular vectors correspond to the client computers projected into
a K-dimensional latent space, and the right singular vectors corresponding to the
servers. In case these K-dimensional latent positions are further updated with
MCMC, the Indian Buffet Process is used as a prior distribution and the full
process is described in the next section.

6.3.2 The infinite latent feature case

Under this scenario, the Indian Buffet Process is used to determine the number of
latent features and the subset of features selected for each client and server. This
provides a flexible nonparametric approach which assumes that there is a poten-



6.3. Latent feature formulation 111

tially infinite number of latent features. Bayesian inference requires the specifica-
tion of a prior over this infinite binary matrix: the Indian Buffet Process is such a
prior and its generative process will be discussed in the following.

In particular, while specifying such prior on the triple (K,U, V ), we look to
introduce some cluster structure in the features by encouraging sparsity in the
matrices U and V , so that each client/server only possesses a subset of the possi-
ble latent feature measurements. Sparsity reflects the idea that only some small
proportion of coefficients should be non-zero. The reason why sparsity is often
sought is that statistical real world data often exhibit sparsity. In addition, spar-
sity assumptions can be a very good regulariser to avoid model overfitting and can
be exploited for efficient computation. The IBP naturally incorporates sparsity
and the resulting sparse representation allows increased data reduction compared
to standard data reduction tools. The assumption that the observed entities only
manifest a sparse subset of an unbounded number of latent classes is often used in
nonparametric Bayesian statistics. Bayesian nonparametric models are very flex-
ible and can be able to model data better than less flexible models, for instance
models in which the number of classes is chosen a priori. This is due to the fact
that Bayesian methods are most accurate when the prior adequately captures the
a priori assumptions.

Suppose F represents a matrix containing K-dimensional latent feature vectors,
one for each entity of interest. Features can be binary or real-valued, and so it
is possible to break F into two components: a binary matrix � indicating which
features are possessed by each entity, and a matrix W representing the value of
each feature for each entity. Thus, F can be viewed as the Hadamard elementwise
product of � and W , F = ��W .

Following this notation, the cluster feature matrix U can be therefore decom-
posed into two components: a binary matrix �U 2 {0, 1}|X|⇥K with entry �xk = 1

if and only if client x possesses feature k, and a second matrix Ũ 2 R|X|⇥K com-
prising the continuous feature values of each feature for each client. The feature
matrix U can then be expressed as the elementwise Hadamard product of these



112
Chapter 6. An entire-network model for the intensity of arrival of

new edges

two matrices,
U = �U � Ũ , (6.16)

as illustrated in Figure 6.1. Similarly, the server feature matrix V = (v1, . . . , v|Y |) 2

R|Y |⇥K is expressed as the Hadamard product of matrices �V 2 {0, 1}|Y |⇥K and
Ṽ 2 R|Y |⇥K ,

V = �V � Ṽ . (6.17)

|X
|
C

li
en

ts

K Features

�

0.2 0.3 0.6

1.2 -0.4

-1.1

1.8

0.8

K Features

Figure 6.1: Example of the decomposition of U . A binary matrix �U (first panel)
indicates which features are active. Elementwise multiplication of �U by Ũ of
continuous values produces the representation in the second panel.

Note that in the latent class representation described in the previous section
�U (�V ) would be a binary matrix with each row corresponding to each data point
and each column corresponding to a class of clients (servers). For determining K

and the subset of features selected for each client and server, independent Indian
buffet process priors with Poisson parameter ✓ > 0 are assigned to �U and �V .
The IBP defines a distribution over the rows of an infinite binary matrix, and its
generative process is described below.

Indian Buffet Process This model posits that each entity can be explained by
a sparse subset of latent features. The number of features is unbounded a priori
but with probability 1, a feature matrix drawn from an IBP will only have a finite
number of non-zero features. Inspired by the derivation of the Chinese restaurant
process by Pitman (2002), the name of the IBP is a culinary metaphor describing



6.3. Latent feature formulation 113

how to generate the non-zero columns of a matrix of features. We illustrate the
IBP process by considering the binary client feature matrix �U 2 R|X|⇥K . The
following steps equivalently hold for the computer binary matrix �V 2 R|Y |⇥K . In
this metaphor, each row of �U corresponds to a customer at an Indian buffet and
each column corresponds to one of infinitely many dishes. For a client x, let �xk

be the entry at (x, k), then we have �xk = 1 if the x
th customer tastes the k

th dish
and zero otherwise. The process is shown in Figure 6.2. Without referring to the
culinary metaphor, the feature matrix �U can be generated from an IBP(✓), with
✓ > 0, starting with an all-zero matrix and performing the following:

• In the first row, set the first Poisson(✓) columns to one. Leave the rest all
zero.

• Assuming the first x� 1 rows are filled, then fill in the x
th row as follows:

– for each non-zero column, set the �xk = 1 with probability mk/x, with
mk number of non-zero entries in the k

th column,
– add an additional Poisson(✓/x) ones after that last non-zero column.

More specifically, the prior distribution resulting from the IBP is constructed
as the limit of a finite Beta-Bernoulli process model (Hjort, 1990). This model
is described in Appendix B.1 for completeness. Ghahramani and Griffiths (2005)
show that the likelihood of �U (�V ) generated by the Beta-Bernoulli process in
the limit that the number of features K ! 1 is equivalent to the one generated
by the Indian Buffet Process. Ghahramani et al. (2007) then define a scheme to
order the non-zero rows of �U and �V which allows us to take the limit K !1

and find that the probabilities of being produced by an IBP(✓) are respectively
given by

P(�U) =
✓

K

Q|X|
x=1 Kx!

exp{�✓H|X|}

KY

k=1

(|X|�mk)!(mk � 1)!

|X|!
,

P(�V ) =
✓

K

Q|Y |
y=1 Ky!

exp{�✓H|Y |}

KY

k=1

(|Y |� tk)!(tk � 1)!

|Y |!
,

(6.18)



114
Chapter 6. An entire-network model for the intensity of arrival of

new edges

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1
2
3...

...
N

1

C
lie

nt
s

Features

(a)
. . .
. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1
2
3...

...
N

2

C
lie

nt
s

(b)
. . .
. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1
2
3...

...
NN

C
lie

nt
s

(c)

Figure 6.2: An illustration of the Indian Buffet Process for �U . Note that N = |X|.
(a) The first client samples Poisson(✓) features, which is recorded by changing the
corresponding entries of �U to one. (b) and (c) For the x

th client, the first step
is activating the previously sampled features with probability proportional to the
number of clients who already have these features active. The next step is to
activate a Poisson(✓/x) number of new features.

where Kx and Ky indicate the number of new features sampled respectively by
client x and computer y; H|X| =

P|X|
x=1

1
x , H|Y | =

P|Y |
y=1

1
y and tk is the number

of non-zero entries in the k
th column of �V . Derivations of these equations are

provided in Appendix B.2. The IBP assumes exchangeability of the rows of �U

and �V , while the columns are independent. This means that the order in which
the clients activate each feature thus the ordering in the IBP does not affect the
likelihood. Note that this is not necessarily intuitive as, recalling the buffet con-
struction, the client chooses the features based solely on their ‘popularity’. In
summary, the IBP is a simple generative process for which each client and server
has an expected number of features equal to the Poisson parameter ✓.



6.3. Latent feature formulation 115

In the present context, independent Indian buffet process (IBP) priors with
Poisson parameter ✓ will be assigned to both �U and �V . This prior will allow us
to select a final number of features which may be different from the initial number
obtained through SVD. Under this scenario, if KU (KV ) is the total number of
features activated within �U (�V ), then the resulting dimension for the model is
taken to be the maximum, K = max{KU , KV }.

Conditional on K, the continuous-valued entries of Ũ and Ṽ are assigned inde-
pendent standard normal priors. Given the conditional likelihood (6.4), the joint
posterior distribution is given up to proportionality by

P(↵, �, U, V |T
0
, E

0) / P(E 0
|T

0
,↵, �, U, V )P(↵)P(�)P(U)P(V ). (6.19)

Full details on posterior inference for ↵, �, U and V can be found in Section 6.4.
Following Section 6.2, a surrogate truncated-SVD model is used to provide initial
low-rank latent positions for clients and servers. These initial positions are then
used to seed MCMC sampling. Under the IBP prior, the implied assumption for
�U and �V is to retain only a sparse subset of an unbounded number of features.
Thus, to obtain initial matrices resembling draws from an IBP we need to enforce
sparsity on both the left and the right singular vectors obtained in Section 6.3
from the truncated-SVD of ⇤̂. The desired structure can be obtained by using a
so-called sparse singular value decomposition, as described below.

6.3.2.1 Sparse truncated SVD incorporating stability selection

Sparse, initial latent feature matrices can be achieved by interpreting singular
vectors of a standard SVD problem as the regression coefficients of a linear re-
gression and imposing sparsity-inducing penalties in the optimisation objective in
(6.15). The way the SVD approximation relates to linear regression is extensively
discussed by Lee et al. (2010).

Sparse singular vectors are obtained by finding the first SVD-layer which min-



116
Chapter 6. An entire-network model for the intensity of arrival of

new edges

imises the following penalised regression with respect to (s1, u1, v1):

k⇤̂� s1u1v
T
1 k

2

F + ⇢u1P1(s1, u1) + ⇢v1P2(s1, v1), (6.20)

where P1(s1, u1) and P2(s1, v1) are sparsity-inducing penalty terms and ⇢u1 and
⇢v1 tuning parameters that determine the amount of regularisation. As further
described in Section 6.4, the penalty functions will be adaptive lasso penalties.
Note that ⇢u1 = ⇢v1 = 0 leads to the plain SVD criterion. Subsequent layers, or
biclusters, can be extracted in the same way from the residual matrices obtained by
sequentially subtracting the preceding layers and applying standard SVD again.
However, the sparseness of U and V can strongly depend on the choice of the
penalisation parameters. Following Sill et al. (2011), we use stability selection to
obtain stable penalisation parameters and to control the degree of sparsity, i.e. the
number of non-zero coefficients.

Stability selection (Meinshausen and Bühlmann, 2010) is a subsampling method
which combines resampling with variable selection methods, such as penalised re-
gression, allowing Type I (false discoveries) error rates to be controlled. Here, the
selection probability for each variable is estimated by randomly resampling from
the data and calculating the relative frequency, as described below.

Suppose Su1 = {x : u1,x 6= 0} is the true set of variables with non-zero
coefficients in the left singular vector u1 and Pu1 the set of possible penalty
parameters. Different choices of ⇢u1 2 Pu1 lead to different estimated subsets
Ŝ

⇢u1
u1 ✓ {1, . . . , |X|}. For any given ⇢u1 , Ŝ

⇢u1
u1 is implicitly a function of the sam-

ples I = {1, . . . , |Y |}. We denote Ŝ
⇢u1
u1 = Ŝ

⇢u1
u1 (I) where necessary to express this

dependence. Let I
⇤ be a random subsample of {1, . . . , |Y |} of size b|Y |/2c drawn

without replacement. Then, the estimated probability of being in the selected set
Ŝ

⇢u1
u1 (I) is

⇡̂
⇢u1
x = P (x 2 Ŝ

⇢u1
u1 (I⇤)). (6.21)

For a cut-off threshold ⇡thr 2 (0, 1) and a given set of regularisation parameters



6.3. Latent feature formulation 117

⇢u1 , the set of stable variables is

Ŝ
stable
u1

=

⇢
x : max

⇢u12Pu1

⇡̂
⇢u1
x � ⇡thr

�
. (6.22)

We denote the corresponding stable coefficient by ⇢
stable
u1

. Meinshausen and Bühlmann
(2010) show that the threshold value has a very small influence and they suggest
to choose ⇡thr 2 (0.6, 0.9). Let Ŝ

Pu1 =
S

⇢u12Pu1

Ŝ
⇢u1
u1 be the set of variables selected

under some regularisation parameter ⇢u1 and let qPu1
= E(|ŜPu1 (I⇤)|) be the aver-

age number of selected coefficients and Nu1 = {x : u1,x = 0} be the set of variables
with zero coefficients. Then, Vu1 = |Nu1

T
Ŝ

stable
u1

| is the number of falsely selected
variables with stability selection. The expected number of falsely selected coeffi-
cients, E(Vu1), is very hard to control and under some simplifying assumptions,
Meinshausen and Bühlmann (2010) find that E(Vu1) is bounded by

E(Vu1) =
1

(2⇡thr � 1)

q
2
Pu1

|X|
. (6.23)

Let ePu1
=
p
E(Vu1)(2⇡thr � 1)|X|, then the error level can be controlled as long

as qPu1
< ePu1

, which provides an upper bound for the average number of falsely
selected coefficients. Most importantly, the error control also gives a stopping
criterion for the algorithm and automatically determines the number of reasonable
clusters.

Clearly, the same procedure is used to infer the true set of non-zero coefficients
in the right singular vector v1. In brief, the selection probabilities ⇡

⇢v1
y are esti-

mated for each ⇢v1 by taking subsets J⇤
⇢ {1, . . . , |X|}. The regularisation region

is again delimited by qPv1
 ePv1

, where ePv1
=
p
E(Vv1)(2⇡thr � 1)|Y | and the set

of stable non-zero coefficients is given by

Ŝ
stable
v1 =

⇢
y : max

⇢v12Pv1

⇡̂
⇢v1
y � ⇡thr

�
. (6.24)

The detailed algorithm used for efficient estimation of the sparse SVD-layers



118
Chapter 6. An entire-network model for the intensity of arrival of

new edges

incorporating stability selection is further described in Section 6.4.2.1.

6.4 Posterior inference

The inference procedure used to estimate the quantities of interest for the Bayesian
proportional hazards model proposed in Section 6.1 under both the clustering
formulation presented in Section 6.2 and the latent feature extension presented in
Section 6.3 are described below.

6.4.1 Cluster formulation inference

The main inference procedure for the Cox model posterior distribution in (6.7)
consists of two steps. To initialise the algorithm, row and column cluster config-
urations are first obtained through the spectral biclustering algorithm described
in Section 6.2; subsequently, these configurations are updated via MCMC jointly
with Cox model parameters. The Metropolis-Hastings (M-H) algorithm is used to
draw approximate samples from the joint posterior distribution in (6.7) of the Cox
model parameters ↵ and � and cluster configurations and . The sampling pro-
cedure is analogous to what described in Section 5.2.2, where for altering ↵ and �,
simple random walks with Gaussian steps were applied to each randomly selected
component. Similarly, the same procedure described for sampling the clustering
configuration is now applied to both the client cluster configuration and the
server cluster configuration .

6.4.2 Latent feature formulation inference

The main inference procedure for the Cox model posterior distribution in (6.19)
consists of two steps. First, sparse singular value decomposition as described
in Section 6.3 is used to provide reliable initial latent positions, parametrised
through Ũ , Ṽ ,�U ,�V ; subsequently the Cox model parameters and initial latent
positions are jointly updated through an MCMC sampling scheme. The two steps



6.4. Posterior inference 119

are separately described below.

6.4.2.1 Sparse SVD stability selection algorithm

Singular value decomposition incorporating stability selection is used as described
in Section 6.3, in order to provide initial sparse latent configurations. Recall that
sparse singular vectors are obtained by finding the first SVD-layer which minimises
(6.20). The lasso adaptive penalties P1 and P2 are here chosen with weights w1,i

and w2,j as

P1(s1, u1) = s1

|X|X

x=1

w1,x|u1,x|, P2(s1, v1) = s1

|Y |X

y=1

w2,y|v1,y|. (6.25)

Fixing v1, the minimisation in (6.20) becomes

k⇤̂� s1u1v
T
1 k

2

F+⇢u1s1

|X|X

x=1

w1,x|u1,x| = k⇤̂k
2

F+
|X|X

i=1

{ũ
2
1,x�2ũ1,x(⇤̂v1)i+⇢u1w1,x|ũ1,x|},

(6.26)

and the estimated left singular vector ˆ̃u1,x can be obtained by using the well known
soft threshold estimator proposed by Tibshirani (1996) and the stable coefficient
⇢

stable
u1

resulting from stability selection, as

ˆ̃u1,x = sign
n
(⇤̂v1)x

o
(|(⇤̂v1)x|� ⇢

stable
u1

w1,x/2)+, (6.27)

where (a)+ = max {0, a}. Then ˆ̃u1 = (ˆ̃u1,1, . . . ,
ˆ̃u1,|X|)T gives an estimate of the

product of the first left singular vector multiplied with the first singular value.
Therefore, the estimated sparse singular vector becomes û1 = ˆ̃u1/k

ˆ̃u1k.

Similarly, fixing u1 and following the same procedure we have

ˆ̃v1,y = sign
n
(⇤̂T

u1)y
o
(|(⇤̂T

u1)y|� ⇢
stable
v1 w2,y/2)+. (6.28)

Then ˆ̃v1 = (ˆ̃v1,1, . . . , ˆ̃v1,|Y |)T and v̂1 = ˆ̃v1/kˆ̃v1k. Penalised regression models for



120
Chapter 6. An entire-network model for the intensity of arrival of

new edges

both u1 and v1 are alternated until convergence, i.e. either ku1� û1k < ✏ or kv1�
v̂1k < ✏, for a chosen convergence threshold ✏ > 0. Finally, coefficients which are
not contained in the two stable sets Ŝstable

u1
and Ŝ

stable
v1 are set to zero. Therefore, the

components of û1 becomes û1,x = (x 2 Ŝ
stable
u1

)û1,x and similarly the components
of v̂1 becomes v̂1,y = (y 2 Ŝ

stable
v1 )v̂1,y. The next layers are sequentially obtained

by repeating the steps above on the residual matrix subtracting the preceding
approximation derived by applying regular SVD to the submatrices defined by
Ŝ

stable
u1

and Ŝ
stable
v1 . The whole procedure stops if either Ŝ

stable
u1

= ; or Ŝ
stable
v1 = ;.

The full algorithm is outlined in Algorithm 4.

Algorithm 4 SSVD with stability selection

1: INPUT=(|X|⇥ |Y | matrix ⇤̂)

2: repeat<Find SSVD layers>

3: Apply SVD to ⇤̂.

4: Denote the first SVD layer as {s1, u1, v1}, choose E(Vv1), E(Vu1), ⇡thr, ✏.

5: while ku1 � û1k > ✏ or kv1 � v̂1k > ✏ do

6: 8⇢u1 draw I
⇤ and estimate ⇡̂

⇢u1
x , define Pu1 s.t. qPu1

< ePu1
.

7: Estimate Ŝ
stable
u1

.

8: Set ˆ̃u1,x = sign
n
(⇤̂v1)x

o
(|(⇤̂v1)x|� ⇢

stable
u1

w1,x/2)+

9: Let ˆ̃u1 = (ˆ̃u1,1, . . . ,
ˆ̃u1,|X|)T and û1 = ˆ̃u1/k

ˆ̃u1k.

10: 8⇢v1 draw J
⇤ and estimate ⇡̂

⇢v1
i , define Pv1 s.t. qPv1

< ePv1
.

11: Estimate Ŝ
stable
v1 .

12: Set ˆ̃v1,y = sign
n
(⇤̂T

u1)y
o
(|(⇤̂T

u1)y|� ⇢
stable
v1 w2,y/2)+.

13: Let ˆ̃v1 = (ˆ̃v1,1, . . . , ˆ̃v1,|Y |)T and v̂1 = ˆ̃v1/kˆ̃v1k.

14: Set v1 = v̂1 and u1 = û1.

15: Set ŝ1 = û1
T ⇤̂v̂1 so that û1,i = (i 2 Ŝ

stable
u1

)û1,x, v̂1,y = (y 2 Ŝ
stable
v1 )v̂1,y.

16: Set ⇤̂ = ⇤̂� s1û1v̂1
T (submatrix defined by Ŝ

stable
u1

and Ŝ
stable
v1 )

17: until Ŝstable
u1

= ; or Ŝ
stable
v1 = ;

18: OUTPUT=(Set of stable SSVD layers)



6.4. Posterior inference 121

6.4.2.2 Inference of features and Cox model parameters

The latent feature approach allows us to simultaneously infer the number of latent
features while at the same time inferring which features each entity has and how
observed data are influenced by those features. Under the Indian Buffet process
prior, our algorithm uses Metropolis sampling moves to sample both the Cox model
parameters ↵ and � and the feature matrices U and V . Again, for altering ↵ and �,
simple random walks with Gaussian steps were applied to each randomly selected
component and so attention is below focused on sampling Ũ , Ṽ ,�U ,�V .

Different steps are respectively needed to sample the feature matrices �U and
�V , under the IBP. For simplicity, we describe the feature sampling scheme fo-
cusing only on the client feature matrix �U , although the same sampler is used
for the server matrix �V . For each client x, we need to sample both the value of
an existing feature k, �xk, and the number of new features Kx. The latter step is
necessary as the IBP prior treats the number of latent features as itself a random
variable.

At iteration t + 1, we propose changes to Ũ
t and �t

U (analogous approaches
are used to sample Ṽ

t and �t
V ) as follows.

• Sampling �xk: For a randomly sampled client x, let

K
t
x = {k|1  k  KU ,�

t
xk = 1} (6.29)

be the features currently activated for that client in the latent feature model.
Further, for k 2 {1, . . . , KU} let dt

k =
P

x2X �t
xkbe the number of clients with

feature k currently active. For a randomly chosen feature k 2 {1, . . . , KU +

1}, each value �xk can be resampled from its full conditional distribution,

P(�xk|�
t
�(x,k), . . .) / P(E 0

|T
0
, U, V,↵, �)P(�xk|�

t
�(x,k)), (6.30)

where the second term is the conditional prior distribution for the new value



122
Chapter 6. An entire-network model for the intensity of arrival of

new edges

of �xk. If dt
k > 1 or �t

xk = 0, then we have

P(�xk|�
t
�(x,k)) =

(dt
k)

�xk(|X|� d
t
k)

1��xk

|X|
. (6.31)

Alternatively, if dt
k = �t

xk = 1 such that x is the only client with feature k

active, then U may potentially decrease in dimension. Then, by using the
recursive formula for the Poisson distribution, we have the following updates

P(�xk = 1|�t
�(x,k))

P(�xk = 0|�t
�(x,k))

=
✓

|X||Kt
x|
. (6.32)

Finally if k = (KU + 1), proposing an increase in dimension of U ,

P(�xk = 1|�t
�(x,k))

P(�xk = 0|�t
�(x,k))

=
✓

|X|(|Kt
x| + 1)

. (6.33)

• Sampling ũxk: Simple random walks with Gaussian steps are applied to
each randomly selected value ũxk of Ũ .

• Sampling ✓: Under the IBP model, for each client x the distribution of the
number of sampled features is Poisson(✓/x). By making use of the conve-
nience of conjugacy with the prior �(a✓, b✓) for the hyperparameter ✓, samples
can be drawn directly from the the posterior distribution

�(a✓ +KU , b✓ +
|X|X

x=1

1/x). (6.34)

6.5 An application to LANL computer network data

For computational tractability, the methods discussed in the previous sections have
been tested on a sample of event data corresponding to a random selection of 1,000
clients of the 2015 LANL authentication data set described in Section 2.2. These
events were analysed along with the red team event data and 15 sample repetitions
were used for robustness. For MCMC sampling, the total number of iterations was



6.5. An application to LANL computer network data 123

set to 5,000, after a burn-in period of size 1,000.

The posterior means of model coefficients and box-plots of their 95% highest
posterior density (HPD) credible intervals, under both the cluster formulation and
the latent-feature formulation, are shown in Figures 6.3 and 6.6 respectively. For
the cluster formulation, to allow coherent posterior model averaging across the
cluster dimensions L and M (cf. Section 6.2), which may vary across samples,
we calculated mean coefficients �̄1 =

PL
l=1 �1,l/L and �̄2 =

PM
m=1 �2,m/M respec-

tively, summarising the coefficients over the fitted client and server clusters. This
still allows us to evaluate the additional value of introducing cluster information,
although we loose information about the specific performance of each cluster.

The posterior estimates of the parameters are all significantly positive, with
some natural, but acceptably small, level of variation across samples. For the
nuisance parameters ↵, results confirm the popularity effect for both client and
servers, where computers that have many connecting neighbours are more likely
to make further new connections. The presence of bursts of new edge formation
by clients also was found significative. Specifically, the two indicator variables for
whether the last edge, or the last two edges were new, are also always positive,
which intuitively suggests that new edges occur in bursts. More interestingly, the
significant � parameters confirm that strong additional information is provided by
the identity of the links already formed and the latent communities they suggest,
whether this is characterised by hard clustering of clients and servers, or through a
dot-product model using latent positions. For the cluster model, the initial number
of client and server clusters identified with spectral clustering and extracted via
k-means is L = 2 and M = 3 as shown in Figure 6.4, while MCMC selects on
average L = 5 client clusters and M = 4 server clusters, as shown from the trace
plots of the number of row and column clusters in Figure 6.7.



124
Chapter 6. An entire-network model for the intensity of arrival of

new edges

0
0.2
0.4
0.6
0.8
1

↵1

0.6
0.8
1

1.2
1.4

↵2

0.2
0.4
0.6
0.8
1

↵3

0.8
1

1.2
1.4
1.6
1.8

↵4

1.6
1.8
2

2.2
2.4

�̄1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

2.5

3

Sample

�̄2

Figure 6.3: Posterior estimates coefficients under the cluster formulation, with
credible intervals.

These results have been then compared to a simpler scenario, where only client
clusters were inferred. Following the procedure shown in Chapter 5, we initially



6.5. An application to LANL computer network data 125

Figure 6.4: Clustered graph induced by applying spectral biclustering, reordered
by row clusters.

infer reliable cluster configurations through the sequential agglomerative clustering
described in Section ??. This can provide a way to account for the additional value
of including simultaneous clustering of clients and servers in the model. Posterior
estimates with HPD credible intervals are reported in Figure 6.5. It can be noted
that the estimates are still significantly positive but lower in magnitude, especially
for the client cluster parameter �̄1, suggesting that simultaneously clustering both
clients and servers enhances the performance of the model.

Figure 6.6 then shows three sets of estimates for the latent-feature model.
The blue points correspond to the full inference procedure proposed in Section
6.3.2, where sparse truncated SVD is used to seed an MCMC exploration of the
variable dimension latent feature space. The other two sets of points represent the
resulting estimates from not performing MCMC and just using the truncated SVD
to propose latent features, either with sparsity imposed (green points) or with no
sparsity (yellow points) as discussed in Section 6.3.1. For stability selection, we
selected the threshold ⇡thr for each value of ⇢ so as to guarantee E(Vu) < 20,



126
Chapter 6. An entire-network model for the intensity of arrival of

new edges

0
0.2
0.4
0.6
0.8
1

↵1

0.6

0.8

1

1.2

1.4

↵2

0.2

0.4

0.6

0.8

1

↵3

0.8
1

1.2
1.4
1.6
1.8

↵4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

2

2.5

Sample

�̄1

Figure 6.5: Posterior estimates with credible interval for the cluster formulation,
where only client clusters were inferred.

i.e. we expect fewer than 20 wrong selections. When MCMC is performed, the
magnitudes of the latent position matrices U and V will be different compared to
when no MCMC moves are performed. Thus, to ensure a meaningful comparison



6.5. An application to LANL computer network data 127

of these coefficients, after MCMC the latent positions U and V are rescaled so
that the mean absolute value of the features {Zxy} is the same as that from the
initial values from sparse truncated SVD.

The coefficients are again all significantly positive, confirming the findings of
Figure 6.3. In particular, all the coefficient estimates are higher in magnitude
when using the full inference procedure, suggesting that the MCMC exploration
of the feature space is worthwhile for identifying more significant latent feature
covariates. Figure 6.9 shows the trace plot of the number of active features from
MCMC in the full inference procedure: there is some mixing and the distribution
has a strong mode at K = 8, with some small probability associated with K =

9. When performing sparse truncated-SVD incorporating stability selection, a
dimensionality of K = 6 is automatically chosen, while in the simplest case when
no sparsity is imposed K = 5 appears to be an optimal choice, as shown from the
scree plot of the SVD eigenvalues in Figure 6.8. The scree plots obtained from the
remaining samples can be found in Appendix C for completeness. Appendix C also
contains the scree plot obtained by applying SVD directly on the adjacency matrix
A, rather than on our proposed matrix, ⇤̂. In such case, the SVD decomposition
only found K = 2, confirming that best results are achieved by using ⇤̂.

Finally, the predictive performance of the latent feature model using the dif-
ferent inference methods used in Figure 6.6 was assessed on 10,000 out-of-training
sample authentication events. Table 6.1 reports the averaged likelihood ratios,
showing that performing MCMC leads to a distinct improvement in model fit.
When no MCMC moves are performed on the latent matrices, the plain SVD
leads to better results than the sparse decomposition, which in this case may just
remove useful information or add unnecessary noise. In this case it is clear that we
require the extra effort of MCMC to find a useful sparse solution. In this way, we
have assessed the strength of the effects of each included covariate, for both the
cluster and latent feature models. Therefore, in the next chapter we can finally
proceed with performing anomaly-detection, based on the model which has here
proved to lead to the highest predictive performance.



128
Chapter 6. An entire-network model for the intensity of arrival of

new edges

0.4

0.6

0.8

1

↵1

1

1.2

↵2

0.3

0.4

0.5

↵3

0.9

1

1.1

1.2

1.3

↵4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2

2.2
2.4
2.6
2.8
3

Sample

�

Figure 6.6: Three sets of posterior estimates coefficients under the latent feature
formulation, with credible intervals, obtained from full MCMC ( ), sparse trun-
cated SVD with stability selection ( ), and standard truncated SVD ( ).



6.5. An application to LANL computer network data 129

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
2

4

6

8

N
um

be
r

of
ro

w
cl

us
te

rs

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
2

3

4

5

6

7

MCMC iterations

N
um

be
r

of
co

lu
m

n
cl

us
te

rs

Figure 6.7: Number of identified row and column clusters during the MCMC run.

Comparison Likelihood Ratio
MCMC vs Sparse SVD with stability selection 3.01
MCMC vs SVD 2.37

Table 6.1: Likelihood ratios for the three different model settings.



130
Chapter 6. An entire-network model for the intensity of arrival of

new edges

1 5 10 15 20 25 30
0

2

4

6

K = 5

Number of Components

E
ig

en
va

lu
e

Figure 6.8: Scree plot for decay of singular values from the SVD of ⇤̂, in the interval
[0, 30], with the characteristic ‘elbow’ corresponding to the largest difference in
magnitude.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
5

6

7

8

9

10

MCMC iterations

A
ct

iv
e

fe
at

ur
es

Figure 6.9: Number of active latent features during the MCMC run.



Chapter 7
Monitoring and Anomaly Detection

Anomaly detection is the problem of identifying subsets of data or patterns which
do not conform with a posited model and thus can be seen as a hypothesis testing
problem. In the context of this work, we are concerned with determining if the
new authentication connections observed over some time period can be regarded as
relatively normal - with respect to the model proposed in Chapter 6 - or whether
they should be flagged as anomalous. In particular, the work presented in this
chapter considers the following hypothesis testing:

H0 : normal new edge behaviour,
H1 : some departure from normal new edge behaviour.

How anomalous a test statistics is with respect to the null hypothesis is usually
represented by a p-value, which will be a quantity of central interest in this chapter.
Note that here, we will be only interested in one-sided p-values resulting from
the test above: while traversing through the network, an intruder will always
necessarily increase the number of new edges being created.

In this chapter, we will first assess the goodness-of-fit of the learned inten-
sity model (6.1) and then, we will show how to construct an anomaly detection
method based on such a model. Specifically, each new edge will be sequentially
scored according to our model by creating a measure of surprise, i.e. a p-value,
from the predictive distribution of each new observed edge. This sequence will

131



132 Chapter 7. Monitoring and Anomaly Detection

then be combined into a single time-varying score for each client in the network
(alternatively, in future work interest could equally be focused on servers), such as
a control chart (Nelson, 2001). The method will be finally demonstrated on real
computer network data.

The remainder of this chapter is organised as follows. Section 7.1 introduces
the posterior predictive p-values for each new edge observed, which will be later
used for determining if observed new connections over some time period can be
considered normal, and performs goodness-of-fit analyses based on such quantity;
while Section 7.2 shows how the model proposed can be used to construct an
anomaly detection method, which is then applied to real computer network data.

7.1 Monitoring

7.1.1 Predictive p-values

Before proceeding with anomaly detection, it is fundamental to evaluate the plau-
sibility of the model proposed. In Chapter 6 we have already assessed the strength
of the effect of each covariate included, for both the cluster and latent feature
formulation. Here, for assessing fit, the quantity of interest is the posterior pre-
dictive distribution (6.3) of each new edge observed in (T 0

, E
0), from which we can

calculate a corresponding p-value.

After observing time-ordered edges (t01, e
0
1), . . . , (t

0
n�1, e

0
n�1), let e

0
n = (x0

n, y
0
n)

be the nth new edge in (T 0
, E

0), observed at time t
0
n. A p-value for this observation

is given by the model probability of observing an edge no more probable than e
0
n,

denoted pn. The calculation of pn is given by

pn =

P
(x,y)/2Gt0n

�xy(t0n) [0,�x0ny0n
(t0n)]{�xy(t0n)}

P
(x,y)/2Gt0n

�xy(t0n)
, (7.1)

which quantifies the probability of observing an event as rare as the realised e
0
n =

(x0
n, y

0
n). Note that the numerator is the sum of intensities over all possible new



7.1. Monitoring 133

edges with intensity less than or equal to the edge observed.

Note that the p-values in (7.1) are generated from discrete random variables,
and as a result they are conservative. This means that the evidence against the
null hypothesis of normal behaviour will be understated. When such p-values are
combined this effect is exacerbated, possibly resulting in extremely conservative
p-values. Therefore, efficiently combining p-values presents important issues, and
these will be further considered in Section 7.2.

7.1.2 Results

We perform a Kolmogorov-Smirnov (KS) test (Lewis, 1956) for the set of observed
p-values (7.1), under the null hypothesis that they are distributed as uniform
random variables on the unit interval, to test for model fit. The test is performed
for both the cluster and the latent feature model formulations, with the purpose
of comparison. In both cases, the p-values are generated from discrete random
variables and so they are stochastically larger than uniform. Thus, to perform the
test we use randomised p-values (Pearson, 1950), which are known to be marginally
uniform on the unit interval if the model is correct. Figure 7.1 shows the empirical
cumulative distribution of the observed p-values under both model formulations.
We can observe that the distributions are approximately uniform in both cases,
with the KS test yielding a p-value of 0.364 and 0.678, respectively for the cluster
and the latent feature model.

Furthermore, inference quality and computational efficiency of both model for-
mulations proposed in Chapter 6 are compared in terms of convergence diagnostics
and algorithm run-times, as shown in Table 7.1. Results confirm that the latent
feature model, under the IBP, outperforms the cluster model. Unfortunately, this
comes at a cost of a higher running time of the sampler, which is dominated by
the computation of the likelihood term: if only one element of the latent position
vectors is changed, then the likelihood may be updated in O(K2) time. The In-
dian Buffet Process provides a very flexible framework but inference might suffer
from slow mixing or poor scalability, due to the very large number of possible



134 Chapter 7. Monitoring and Anomaly Detection

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

F̂
n
(p
)

0 0.2 0.4 0.6 0.8 1
p

Figure 7.1: Empirical cumulative distribution of observed p-values under the clus-
ter model (left) and the latent feature model (right), against the Uniform(0, 1)
cumulative distribution function.

configuration states.

Model formulation Log Likelihood Iteration Time
Cluster -18804.34 81.4s
Latent-feature (IBP) -18379.93 131.7s

Table 7.1: Out-of-training log likelihood under both formulations. All values are
averages over the test pairs.

For convergence diagnostics, the log-likelihood for each MCMC iteration under
both methods for the first data sample analysed is shown in Figure 7.2. The top
panel shows the marginal likelihood for each iteration of the cluster formulation
model, while the log-likelihood for the latent feature model under the IBP is shown
in the bottom panel. For both models, the process appears stationary as the
number of iterations increases. In particular, the plot suggests that the more
complex latent feature model requires more time to complete burning-in.



7.2. Anomaly Detection 135

0 1,000 2,000 3,000 4,000 5,000

�2.6

�2.4

�2.2

�2

�1.8
·104

Lo
g-

Li
ke

lih
oo

d

0 1,000 2,000 3,000 4,000 5,000
�4

�3.5

�3

�2.5

·104

Iteration Number

Lo
g-

Li
ke

lih
oo

d

Figure 7.2: Log-likelihood vs. number of MCMC iterations, for the cluster formu-
lation (top), and for the latent formulation (bottom).

7.2 Anomaly Detection

7.2.1 Combining p-values for ranking clients

To identify local deviations in the network, we are interested in finding anomalous
behaviour over time for specific client computers. In this section, we describe a
method to create time-varying anomaly score for each client in the network using
the popular Fisher’s method (Fisher, 1925) for combining p-values.

We utilise the sequence of predictive p-values (pn)n�1 (7.1) presented in the pre-
vious section, derived from the sequence of new edges (T 0

, E
0) = ((T 0

n)n�1, (E 0
n)n�1)

arriving in the dynamic graph Gt. As we are interested in finding anomalous be-



136 Chapter 7. Monitoring and Anomaly Detection

haviour for specific client computers in the network, it is convenient to define
(T 0x

,Y
0x) = ((T 0x

n )n�1, (Y 0x
n )n�1) to be the subprocess of the new edge process

(T 0
, E

0) for client x, corresponding to those indices n for which x(xn) = 1. Cor-
respondently, let (px

n)n�1 be the subsequence of p-values of client x. We combine
the sequence of p-values for client x over time using Fisher’s method. This defines
the following control chart

sx(t) = �̄
2
2{1+N+

x (t)}

 
�2
X

n�1

[0,t)(t
0x
n ) log p

x
n

!
, (7.2)

where N
+
x (t) is the outdegree of client x before time t and �̄

2
⌫(·) is the survivor

function of the chi-squared distribution with ⌫ degrees of freedom. Under the null
hypothesis of no attacks, and if the model of normal behaviour holds, the p-values,
and by extension sx(t) for any t � 0, are approximately uniform on the unit
interval. Clearly, extreme, small values of (7.2) represent anomalous behaviour of
surprising new edge formation, and so here we are interested in anomaly scores
such as

inf
t�0

sx(t). (7.3)

In cyber-security applications, the distribution of (7.3) varies for different values of
x, since some clients make many more new connections than others (see for example
Figure 2.2). For this reason, tailored rejection regions for each client, based on
their number of connections, must be calculated when building the control chart;
this can be achieved through simple Monte Carlo estimation.

7.2.2 Results

The anomaly detection results presented in this section are restricted to the latent-
feature model, since this has shown to lead to the highest predictive accuracy.
Figure 7.4 shows the p-values (7.1) and control chart scores (7.2) (on the log-scale)
for two of the known compromised clients (C17693, C19932) in the red team,
and two randomly selected uninfected clients (C349, C586) that we have used as
benchmark. In both infected cases, we can see some extreme values in the p-



7.2. Anomaly Detection 137

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e

R
at

e

10�2 10�1 100

False Positive Rate

Figure 7.3: ROC curves for each client, for each sample repetition, shown on both
linear (left) and log scales (right).

values and the control charts, leading to clear detection at the indicated 1% and
0.1% significance thresholds estimated through Monte Carlo as discussed above.
In contrast, the control charts of the uninfected clients seem to indicate a normal
behaviour, staying well above the thresholds for all times t.

Finally, Figure 7.3 shows the receiver operating characteristic (ROC) curves
for each of the 15 sample repetitions for the sequence of p-values given by (7.1)
and the scores obtained using (7.3). The results show a very high true positive to
false positive ratio over low thresholds, although in the right panel of the figure,
focusing on low false positive thresholds, we still see a number of true positives
which we would ideally like to detect.



138 Chapter 7. Monitoring and Anomaly Detection

0 0.5 1 1.5 2

·106

10�7

10�5

10�3

10�1

p
-v

al
ue

0 1 2 3 4

·106

0 1 2 3

·106

10�7

10�5

10�3

10�1

t (seconds)

p
-v

al
ue

0 1 2 3 4

·106t (seconds)

Figure 7.4: Observed p-values ( ) over time and the corresponding control chart
( ) for the two identified infected clients and two of uninfected clients in the
red bulk data. Top left: C17693; Top right: C19932; Bottom left: C349; Bottom
right: C586. Control chart thresholds at the 1% ( ) and 0.1% ( ) significance
levels are shown for each client.



Chapter 8
Conclusion and Future Work

8.1 Conclusion

This thesis has addressed the problem of modelling the arrival of new edges in
a large computer network graph. When an intruder starts infecting a network
machine he or she does not typically have information about which servers that
machine usually connects to. As a result, the intruder will often make new edges
and so study of new edge behaviour can be strongly informative about the presence
of malicious activity. The work presented in this thesis was motivated by the need
to understand such behaviour. In particular, Chapter 2 to Chapter 6 have been
devoted to modelling the normal behaviour of new edges over time, while finally
in Chapter 7 an anomaly detection method is constructed, based on the model
learned in the previous chapters.

From a modelling point of view, two main aspects of new edges were investi-
gated: first, we have focused on the rates at which clients form new edges, and
second, we have focused on predicting the likely identity of each (client, server)
potential new edge. In the first case, we performed variable selection for find-
ing relevant covariates to be included in such a model; while in the second, we
simultaneously modelled the hazard of observing new edges and any unobserved
structural features inferred from historic connections. Examining network struc-

139



140 Chapter 8. Conclusion and Future Work

ture has proved to be fundamental for improving the predictive performance of
our model. In both cases, inference was carried out in a Bayesian framework and
so MCMC algorithms were used. To aid quick convergence, surrogate models for
identifying initial, reliable cluster configurations were used to seed the sampler.
When the size of the clustering problem analysed is so large, random initial allo-
cations of the clustering or latent positions could have resulted in infeasibly long
algorithm running times.

In particular, the main contribution of this work consisted of a robust Bayesian
model which simultaneously addressed both the rates at which clients make new
edges and any underlying latent network structure. We have further developed
two different formulations for inferring the latent structure of the network. In
both cases, the mechanism of new edge formation was modelled as a Bayesian Cox
proportional hazards model and surrogate models were used to infer initial latent
positions of clients and servers in the network. In the first formulation, a clustering
model under hard-thresholding has been used, while in the second the flexibility of
the model has been extended by letting each client and each server be associated
with a (potentially unbounded) vector of latent features.

The methodology proposed has proved to be well suited for modelling new edges
in a large network when demonstrated on real computer network data: results from
both methods showed a considerable significance of the time-varying covariates on
the predictive probability of observing a particular new connection and strongly
indicate the positive impact of introducing a notion of similarity in the model.
In particular, the most flexible, nonparametric latent feature approach, under
the Indian Buffet Process prior, has led to the highest performance in terms of
model fitting and predictive ability. Furthermore, our anomaly detection method
has shown to drive encouraging performance in detecting compromised clients at
low false positive rates. However, these results are not conclusive and adequately
combining p-values might need to be taken into more consideration in future work.



8.2. Future Work 141

8.2 Future Work

Throughout this thesis, the sequence of new edges generated from each unique
(client, server) pair in the network has been employed to demonstrate our methods
on real data. A first, straightforward extension may simply consider replicating
the analyses presented here on the sequence of new (user domain, server) edges,
in place of the (client, server) pairs. In this way, each client computer and user ID
pairing would be treated as a separate network entity. As an example, figure 8.1
shows a graph of connections in the red team data from each user domain to each
destination server. We can notice that users with a relatively high degree seem
to connect to servers in disconnected graph components. This might suggest that
our clustering method, under both formulations proposed, could easily separate
the user domains into well-defined clusters, thus enhancing the model prediction
performance.

From a modelling perspective, an avenue of research could involve directly cap-
turing the power-law phenomenon of computer networks as a part of the modelling
process. For instance, Pitman and Yor (1997) have proposed a generalisation of
the Dirichlet process which include power-law properties. Following a similar pro-
cedure, Teh and Gorur (2009) have proposed a three-parameter generalisation of
the IBP, which allows to capture power-law behaviour in the context of latent fea-
ture models. Both these frameworks could act as interesting comparisons with our
model, where power-law behaviour is not part of the modelling process but rather,
it has been incorporated in the model by using several time-varying degree covari-
ates. However, these methods can be computationally very demanding; to reduce
the computational times, more efficient MCMC schemes, such as split-merge sam-
pling (Meeds et al., 2006), could be explored. Splitting and merging features in
the binary matrices of latent features would signify performing non-incremental
moves. Such moves can produce significative changes in the configuration state
just in a single iteration and could thus help the sampler exploring the parameter
space more efficiently.

Furthermore, computer network traffic data typically exhibit seasonal patterns



142 Chapter 8. Conclusion and Future Work

Figure 8.1: A graph showing connections from user domains to server computers
involving red team activity.

since human users are more likely to be active on weekdays during the day time
than they are at night time or at the weekend; thus a robust client model of
normal network behaviour should also aim at identifying this key feature. In the
context of this work, this would signify capturing seasonality through the client
baseline hazard function rx(t) for the client model (5.2) in Chapter 5. This would
aid detecting anomalous behaviour for each client x, who is forming bursts of new
edges at particular times of day.

Finally, more attention should be addressed to efficiently combining p-values,
with the purpose of improving the performance of our anomaly method. One of the
main issues encountered in cyber-security applications is the imbalance between
the vast amount of p-values generated under the null distribution and the tiny pro-
portion of activity which corresponds to cyber threat. As a result, there are only
few, very tiny significant p-values and unfortunately Fisher’s method is known to



8.2. Future Work 143

fail to some degree to adequately address this. For this reason, when building the
control chart presented in Chapter 7, the choice of the construction of the control
chart should be adapted according to the precise target of the anomaly detection
scheme. A diverse range of p-value combination methods appear in the literature,
each with different statistical properties (e.g. Stouffer (1949); Pearson (1933)),
which have not been considered here. A natural extension of the anomaly detection
work presented here would be to examine the performance of our method under
different combiners. For instance, mid-p-values (Lancaster, 1952; Rubin-Delanchy
et al., 2018) have been shown to perform well in cyber-security applications (Tur-
cotte et al., 2016). In addition, previous studies of computer network data have
indicated evidence of higher correlations between the timings of the anomalous
events for the true positives rather than the false positives (Turcotte et al., 2016).
Thus, further extensions could focus on modelling the correlation in timings of the
anomalous events between client computers and server computers, which could in
turn aid reducing false alarms.



144 Chapter 8. Conclusion and Future Work



Bibliography

Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D. and Levine,
A. (1999), ‘Broad patterns of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by oligonucleotide arrays’, Proceedings
of the National Academy of Sciences 96(12), 6745–6750.

Banfield, J. D. and Raftery, A. E. (1993), ‘Model-based gaussian and non-gaussian
clustering’, Biometrics 49, 803–821.

Bernardo, J. and Smith, A. (2007), Bayesian Theory, John Wiley & Sons, New
York, NY.

Bock, H. H. (1996), ‘Probabilistic models in cluster analysis’, Computational
Statistics & Data Analysis 23(1), 5–28.

Booth, J., Casella, G. and Hobert, J. (2008), ‘Clustering using objective func-
tions and stochastic search’, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 70(1), 119–139.

Broman, K. W. and Speed, T. P. (2002), ‘A model selection approach for identi-
fication of quantitative trait loci in experimental crosses’, Journal of the Royal
Statistical Society, Series B (Statistical Methodology) 64, 641–656.

Busygin, S., Prokopyev, O. A. and Pardalos, P. M. (2008), ‘Biclustering in data
mining’, Computers & Operations Research 35(9), 2964–2987.

145



146 Bibliography

Cahill, M. H., Lambert, D., Pinheiro, J. C. and Sun, D. X. (2002), Handbook of
Massive Data Sets., Kluwer Academic Publishers, chapter Detecting Fraud in
the Real World, pp. 911–929.

Chandola, V., Banerjee, A. and Kumar, V. (2009), ‘Anomaly detection: A survey’,
ACM Computing Surveys (CSUR) 41(3), 15.

Cheng, Y. and Church, G. M. (2000), Biclustering of expression data, in ‘Proceed-
ings of the Eighth International Conference on Intelligent Systems for Molecular
Biology’, AAAI Press, pp. 93–103.

Chipman, H., George, E. and McCulloch, R. (1998), ‘Bayesian cart estimation
(with discussion and rejoinder)’, Journal of the American Statistical Association
93, 935–960.

Cho, H., Dhillon, I., Guan, Y. and Sra, S. (2004), Minimum sum-squared residue
co-clustering of gene expression data., in ‘Proceedings of the Fourth SIAM In-
ternational Conference on Data Mining’, pp. 114–125.

Clyde, M. (1999), ‘Discussion of Bayesian model averaging: A tutorial with dis-
cussion by J. A. Hoeting, D. Madigan and A. E. Raftery and C. T. Volinsky’,
Statistical Science 14, 401–404.

Cox, D. R. (1972), ‘Regression models and life-tables (with discussion)’, Journal
of the Royal Statistical Society, Series B (Statistical Methodology) 34, 187–220.

Denison, D., Holmes, C., Mallick, B. and Smith, A. (2002), Bayesian methods for
nonlinear classification and regression, John Wiley & Sons, New York, NY.

Dhillon, I. S. (2001), Co-clustering documents and words using bipartite spectral
graph partitioning, in ‘Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining’, ACM, pp. 269–274.

Dhillon, I. S., Guan, Y. and Kulis, B. (2004), Kernel k-means: Spectral clustering
and normalized cuts, in ‘Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining’, KDD ’04, ACM, pp. 551–
556.



Bibliography 147

Duda, R. O. and Hart, P. E. (1973), Pattern Classification and Scene Analysis,
John Willey & Sons, New Yotk.

Eckart, C. and Young, G. (1936), ‘The approximation of a matrix by another one
of lower rank’, Psychometrika 1, 211–218.

Fisher, R. (1925), Statistical methods for research workers, Edinburgh Oliver &
Boyd.

Fisher, R. A. (1929), ‘Tests of significance in harmonic analysis’, Proceedings of
the Royal Society of London. Series A 125(796), 54–59.

Fowler, A. and Heard, N. (2012), ‘On two-way Bayesian agglomerative clustering
of gene expression data’, Statistical Analysis and Data Mining 5, 463–476.

Fraley, C. and Raftery, A. E. (2002), ‘Model-based clustering discriminant analysis,
and density estimation’, Journal of the American Statistical Association 97, 611–
631.

Friedberg, I., Skopik, F., Settanni, G. and Fiedler, R. (2015), ‘Combating advanced
persistent threats: From network event correlation to incident detection.’, Com-
puters & Security 48, 35–57.

Friel, N. and Wyse, J. (2012), ‘Bayesian interpolation estimating the evidence–a
review’, Statistica Neerlandica 66(3), 288–308.

Gelfand, A. and Smith, A. F. M. (1990), ‘Sampling-based approaches to cal-
culating marginal densities’, Journal of the American Statistical Association
410(85), 398––409.

Ghahramani, Z. and Griffiths (2005), Infinite latent feature models and the indian
buffet process, in ‘Advances in Neural Information Processing Systems 18’, MIT
Press, pp. 475–482.

Ghahramani, Z., Griffiths, T. and Sollich, P. (2007), Bayesian nonparametric latent
feature models., Oxford University Press, pp. 201–225.



148 Bibliography

Gower, J. C. and Ross, G. J. S. (1969), ‘Minimum spanning trees and single link-
age cluster analysis’, Journal of the Royal Statistical Society. Series C (Applied
Statistics) 18(1), 54–64.

Green, P. J. (1995), ‘Reversible jump Markov chain Monte Carlo computation and
bayesian model determination’, Biometrika 82, 711–732.

Halliday, D. and Rosenberg, J. (1999), Time and frequency domain analysis of
spike train and time series data, U. Windhorst and H. Johansson, Eds., Springer
Berlin Heidelberg.

Hartigan, J. (1975), Clustering Algorithms, John Wiley & Sons, New York, NY.

Hartigan, J. A. (1972), ‘Direct clustering of a data matrix’, Journal of American
Statistical Association 67, 123–129.

Hartigan, J. A. and Wong, M. A. (1979), ‘Algorithm AS 136: A K-means clustering
algorithm’, Applied Statistics pp. 100–108.

Hastings, W. (1970), ‘Monte Carlo sampling methods using Markov chains and
their applications’, Biometrika 57(1), 97–109.

Heard, N. (2011), ‘Iterative reclassification in agglomerative clustering’, Journal
of Computational and Graphical Statistics 20(4), 920–936.

Heard, N. A., Holmes, C. C. and Stephens, D. A. (2006), ‘A quantitative study of
gene regulation involved in the immune response of anopheline mosquitoes: An
application of bayesian hierarchical clustering of curves’, Journal of the Ameri-
can Statistical Association 101, 18–29.

Heard, N. A. and Turcotte, M. J. (2014), Monitoring a Device in a Communication
Network, Imperial College Press, chapter 6, pp. 151–188.

Heard, N., Rubin-Delanchy, P. and Lawson, D. (2014), Filtering automated polling
traffic in computer network flow data, IEEE, pp. 268–271.

Heard, N., Weston, D., Platanioti, K. and Hand, D. (2010), ‘Bayesian anomaly
detection methods for social networks’, Annals of Applied Statistics 4, 645–662.



Bibliography 149

Heller, K. and Ghahramani, Z. (2005), Bayesian hierarchical clustering, in ‘Pro-
ceedings of the 22nd International Conference on Machine learning’.

Hjort, N. L. (1990), ‘Nonparametric Bayes estimators based on beta processes in
models for life history data’, The Annals of Statistics 18(3), 1259–1294.

Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999), ‘Bayesian
model averaging: A tutorial with discussion’, Statistical Science 14, 382–417.

Hoff, P. D. (2002), ‘Latent space approaches to social network analysis’, Journal
of the American Statistical Association 97(460), 1090––1098.

Hoff, P. D. (2007), ‘Model averaging and dimension selection for the singular value
decomposition’, Journal of the American Statistical Association 102(478).

Hoff, P. D. (2009), ‘Multiplicative latent factor models for description and predic-
tion of social networks’, Computational and Mathematical Organization Theory
15(4), 261–272.

Hoff, P. D., Raftery, A. and Handcock, M. S. (2005), ‘Bilinear mixed-effects models
for dyadic data’, Journal of the American Statistical Association 100(469), 286–
295.

Horn, C. and Willett, R. (2011), Online anomaly detection with expert system
feedback in social networks., in ‘ICASSP’, IEEE, pp. 1936–1939.

Idé, T. and Kashima, H. (2004), Eigenspace-based anomaly detection in computer
systems, in ‘Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’04’, ACM Press, pp. 440–449.

Jeffreys, H. (1961), Theory of Probability (3rd Edition), Oxford University Press,
New York.

Kass, R. E. and Raftery, A. E. (1995), ‘Bayes factors’, Journal of the American
Statistical Association 90(430), 773–795.

Kent, A. D. (2014), ‘User-computer authentication associations in time’, Los
Alamos National Laboratory.



150 Bibliography

Kent, A. D. (2015a), ‘Comprehensive, multi-source cyber-security events’, Los
Alamos National Laboratory.

Kent, A. D. (2015b), Cyber security data sources for dynamic network research,
in ‘Dynamic Networks in Cybersecurity’, Imperial College Press.

Kim, S., M., T. and Vannucci, M. (2006), ‘Variable selection in clustering via
dirichlet process mixture models’, Biometrika 93, 877–893.

Kluger, Y., Basri, R., Chang, J. T. and Gerstein, M. (2003), ‘Spectral Biclustering
of Microarray Data: Coclustering Genes and Conditions’, Genome Research
13(4), 703–716.

Lancaster, H. (1952), ‘Statistical control of counting experiments’, Biometrika
39, 419—-422.

Lee, M., Shen, H., Huang, J. Z. and Marron, J. S. (2010), ‘Biclustering via sparse
singular value decomposition’, Biometrics 66(4), 1087–1095.

Lewis, P. A. W. (1956), ‘Some results on tests for Poisson processes’, Biometrika
52(1-2), 67–77.

Li, L., Guo, Y., Wu, W., Shi, Y., Cheng, J. and Tao, S. (2012), ‘A comparison and
evaluation of five biclustering algorithms by quantifying goodness of biclusters
for gene expression data.’, BioData Mining 5, 8.

MacKay, D. (1991), ‘Bayesian interpolation’, Neural Computation 4, 415–447.

MacQueen, J. (1967), Some methods for classification and analysis of multivariate
observations, in ‘Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics’, University of California Press,
pp. 281–297.

McCullagh, P. (1984), ‘Generalized linear models’, European Journal of Opera-
tional Research 16(3), 285–292.

McLachlan, G. and Basford, K. (1988), Mixture Models: Inference and Applica-
tions to Clustering, Marcel Dekker, New York.



Bibliography 151

Medvedovic, M., Yeung, K. and Bumgarner, R. (2004), ‘Bayesian mixture model
based clustering of replicated microarray data’, Bionformatics 20, 1222–1232.

Meeds, E., Ghahramani, Z., Neal, R. and Roweis, S. (2006), Modeling dyadic data
with binary latent factors, in ‘Proceedings of the 19th International Conference
on Neural Information Processing Systems’, NIPS’06, Cambridge, MA, USA,
pp. 977–984.

Meinshausen, N. and Bühlmann, P. (2010), ‘Stability selection’, Journal of the
Royal Statistical Society, Series B (Statistical Methodology) 72, 417–473.

Metelli, S. and Heard, N. (2014), Modelling new edge formation in a computer
network through bayesian variable selection, in ‘Joint Intelligence and Security
Informatics Conference (JISIC), 2014 European’, IEEE, pp. 272–275.

Metelli, S. and Heard, N. (2016), Model-based clustering and new edge modelling
in a large computer network, in ‘IEEE International Conference on Intelligence
and Security Informatics (ISI), 2016’, IEEE, pp. 91–96.

Metelli, S. and Heard, N. (2018), On Bayesian new edge modelling and anomaly
detection in computer networks. Submitted to the Annals of Applied Statistics.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller,
E. (1953), ‘Equation of state calculations by fast computing machines’, The
Journal of Chemical Physics 21(6), 1087–1092.

Meuwissen, T. H. E. and Goddard, M. E. (2004), ‘Mapping multiple qtl using
linkage disequilibrium and linkage analysis information and multitrait data’,
Genetics Selection Evolution 36, 261–279.

Miller, A. (2002), Subset Selection in Regression., Chapman & Hall/CRC.

Miller, K., Jordan, M. and Griffiths, T. L. (2009), Nonparametric latent feature
models for link prediction, in ‘Advances in Neural Information Processing Sys-
tems 22’, pp. 1276–1284.

Neal, R. (2003), ‘Slice sampling’, Annals of Statistics 31(3), 705–767.



152 Bibliography

Neil, J., Storlie, C., Hash, C., Brugh, A. and M., F. (2013), ‘Scan statistics for the
online detection of locally anomalous subgraphs’, Technometrics 55(4), 403–414.

Nelson, P. R. (2001), ‘Book review: Normality and the process behavior chart by
Donald J. Wheeler’, Technometrics 43(3), 371–371.

Noble, C. C. and Cook, D. J. (2003), Graph-based anomaly detection., in
L. Getoor, T. E. Senator, P. M. Domingos and C. Faloutsos, eds, ‘KDD’, ACM,
pp. 631–636.

Nowicki, K. and Snijders, T. A. B. (2001), ‘Estimation and prediction for stochastic
blockstructures’, Journal of the American Statistical Association 96(455), 1077–
1087.

Park, Y., Priebe, C. E. and Youssef, A. (2013), ‘Anomaly detection in time series
of graphs using fusion of graph invariants.’, Journal of Selected Topics in Signal
Processing 7(1), 67–75.

Patcha, A. and Park, J. (2007), ‘An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends’, Computer Networks
51(12), 3448–3470.

Pearson, E. S. (1950), ‘On questions raised by the combination of tests based on
discontinuous distributions’, Biometrika 37(3/4), 383–398.

Pearson, K. (1933), ‘On a method of determining whether a sample of size n sup-
posed to have been drawn from a parent population having a known probability
integral has probably been drawn at random.’, Biometrika 25(3-4), 379–410.

Pitman, J. (2002), Combinatorial stochastic processes., Technical Report 621,
Dept. Statistics, U.C. Berkeley. Lecture notes for St. Flour course.

Pitman, J. and Yor, M. (1997), ‘The two-parameter poisson-dirichlet distribution
derived from a stable subordinator’, Annals of Probability 25, 855–900.



Bibliography 153

Pothen, A., Simon, H. D. and Liou, K. (1990), ‘Partitioning sparse matrices with
eigenvectors of graphs’, SIAM Journal on Matrix Analysis and Applications
11(3), 430–452.

Priebe, C. E., Conroy, J. M., Marchette, D. J. and Park, Y. (2005), Scan statistics
on enron graphs, SDM 05.

Qin, Z. S. (2006), ‘Clustering microarray gene expression data using weighted
chinese restaurant process’, Bionformatics 22, 1988–1997.

Raftery, A. (1988), Approximate bayes factors for generalized linear models, Tech-
nical Report 121, Department of Statistics, University of Washington.

Raftery, A. E., Madigan, D. and Volinsky, C. T. (1995), ‘Accounting for model
uncertainty in survival analysis improves predictive performance (with discus-
sion)’, In Bayesian Statistics 5, Bernardo JM, Berger JO, Dawid AP, Smith
FM. (eds) .

Raftery, A., Madigan, D. and Hoeting, J. (1997), ‘Bayesian model averaging for
regression models’, Journal of the American Statistical Association 92, 179–191.

Richardson, S. and Green, P. (1997), ‘On Bayesian analysis of mixtures with an
unknown number of components’, Journal of the Royal Statistical Society, Series
B (Statistical Methodology) 59(4), 731–792.

Rissanen, J. (1989), Stochastic Complexity in Statistical Inquery, World Scientific.

Robert, C. and Casella, G. (2004), Monte Carlo Statistical Methods, Springer-
Verlag, 2nd edition, New York.

Rubin-Delanchy, P. T. G., Heard, N. A. and Lawson, D. J. (2018), Meta-analysis
of mid-p-values: some new results based on the convex order. Journal of the
American Statistical Association, to appear.

Schwarz, G. (1978), ‘Estimating the dimension of a model’, The Annals of Statistics
6(2), 461–464.



154 Bibliography

Sharpnack, J., Rinaldo, A. and Singh, A. (2012), ‘Changepoint detection over
graphs with the spectral scan statistic’, arXiv/1206.0773 .

Sill, M., Kaiser, S., Benner, A. and Kopp-Schneider, A. (2011), ‘Robust biclus-
tering by sparse singular value decomposition incorporating stability selection’,
Bioinformatics 27(15), 2089–2097.

Sillanpää, M. and Corander, J. (2002), ‘Model choice in gene mapping: what and
why’, Trends in Genetics 18, 301–307.

Sillanpää, M., Gasbarra, D. and Arjas, E. (2004), ‘Comment on “on the metropolis
hastings acceptance probability to add or drop a quantitative trait locus in
markov chain monte carlo-based bayesian analyses’, Genetics 167, 1037.

Stouffer, S. (1949), The American soldier. Vol. 1: Adjustment during army life,
Studies in social psychology in World War II, Princeton University Press.

Strehl, A. (2002), Relationship-based Clustering and Cluster Ensembles for High-
dimensional Data Mining, PhD thesis, The University of Texas at Austin.

Tanay, A., Sharan, R. and Shamir, R. (2002), ‘Discovering statistically significant
biclusters in gene expression data’, Bioinformatics 18(90001), 136–144.

Teh, Y. W. and Gorur, D. (2009), Indian buffet processes with power-law behavior,
in ‘Advances in Neural Information Processing Systems 22’, Curran Associates,
Inc., pp. 1838–1846.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal
of the Royal Statistical Society, Series B (Statistical Methodology) 58, 267–288.

Turcotte, M. J., Heard, N. A. and Kent, A. D. (2016), Modelling user behaviour
in a network using computer event logs, in ‘Dynamic Networks and Cyber-
Security’, Imperial College Press, London, UK, pp. 67–87.

Turcotte, M. J., Heard, N. A. and Neil, J. (2014), Detecting localised anomalous
behaviour in a computer network., in ‘Advances in Intelligent Data Analysis
XIII - 13th International Symposium’, Springer, pp. 321–332.



Bibliography 155

Turner, H., Bailey, T. and Krzanowski, W. (2005), ‘Improved biclustering of mi-
croarray data demonstrated through systematic performance tests’, Computa-
tional Statistics & Data Analysis 48(2), 235–254.

Valko, M. (2011), Adaptive graph-based algorithms for conditional anomaly de-
tection and semi-supervised learning, PhD thesis, University of Pittsburgh.

Viallefont, V., Raftery, A. and Richardson, S. (2001), ‘Variable selection and
bayesian model averaging in case-control studies’, Statistics in Medicine
20(21), 3215–3230.

Von Luxburg, U. (2007), ‘A tutorial on spectral clustering’, Statistics and Com-
puting 17(4), 395–416.

Ward, J. (1963), ‘Hierarchical grouping to optimize an objective function.’, Journal
of the American Statistical Association 58, 236–244.

Weiss, Y. (1999), Segmentation using eigenvectors: a unifying view, in ‘Proceed-
ings of the IEEE International Conference on Computer Vision’, AAAI Press,
pp. 975–982.

Wichert, S., Fokianos, K. and Strimmer, K. (2004), ‘Identifying periodically ex-
pressed transcripts in microarray time series data’, Bioinformatics 20(1), 5–20.

Xu, S. (2003), ‘Estimating polygenic effects using markers of the entire genome’,
Genetics 163, 789–801.

Zhang, Z. and Jordan, M. I. (2008), ‘Multiway spectral clustering: A margin-based
perspective’, Statistical Science 23, 383–403.



156 Bibliography



Appendix A
Calculation of the marginal posterior

distribution (4.6)

We assume that P(Axy = 1|x 2 Cl, y 2 Sm) = ✓lm, with ✓lm ⇠ Beta(a, b), i.e.

f(✓lm) =
�(a+ b)

�(a)�(b)
✓lm

a�1(1� ✓lm)
b�1

.

Then

L(A| , ,✓)f(✓) =
�(a+ b)

�(a)�(b)

LY

l=1

Y

x2Cl

MY

m=1

Y

y2Sm

✓
Axy

lm (1� ✓lm)
Axy✓

a�1
lm (1� ✓lm)

b�1 =

=
�(a+ b)

�(a)�(b)

LY

l=1

MY

m=1

✓
a�1
lm (1� ✓lm)

b�1
Y

x2Cl

Y

y2Sm

✓
Axy

lm (1� ✓lm)
Axy

=
�(a+ b)

�(a)�(b)

LY

l=1

MY

m=1

✓
a�1
lm (1� ✓lm)

b�1
✓

P
x2Cl

P
y2Sm

Axy

lm (1� ✓lm)

P
x2Cl

P
y2Sm

1�
P

x2Cl

P
y2Sm

Axy

=
�(a+ b)

�(a)�(b)

LY

l=1

MY

m=1

✓
a�1+Mlm
lm (1� ✓lm)

b�1+nlsm�Mlm
,

where
Mlm =

X

x2Cl

X

y2Sm

Axy, nl =
X

x2Cl

1, sm =
X

y2Sm

1.

157



158Appendix A. Calculation of the marginal posterior distribution (4.6)

Recalling that Z 1

0

✓
a(1� ✓)bd✓ =

�(a+ 1)�(b+ 1)

�(a+ b+ 2)
,

we easily find

Z
L(A| , ,✓)f(✓)d✓ =

LY

l=1

MY

m=1

�(a+ b)�(a+Mlm)�(b�Mlm + nlsm)

�(a)�(b)�(a+ b+ nlsm)
.

Clearly, the same result holds for (4.3), with sm = 1.



Appendix B
IBP as limit of a Beta-Bernoulli model

B.1 A finite feature model

Suppose we have |X| clients (or equivalently |Y | servers) and K features. As before,
the possession of feature k by client x is represented by �xk, which belongs to the
binary feature matrix �U , with independently generated features. For each client,
let ⇡k 2 [0, 1] be the probability of possessing feature k and let ⇡ = {⇡1, . . . , ⇡K},
then the probability of �U conditional on ⇡ is given by

P(�U |⇡) =
KY

k=1

|X|Y

x=1

P(�xk|⇡k) =
KY

k=1

⇡k
mk(1� ⇡k)

|X|�mk , (B.1)

where mk =
P|X|

x=1 �xk is the number of clients with feature k active. The conjugate
prior on ⇡ for this model is the beta distribution and thus independent Beta(r,s)
distributions are assumed for each ⇡k:

p(⇡k) =
⇡

r�1
k (1� ⇡

s�1
k )

B(r, s)
, (B.2)

where B(r, s) is the Beta function. Exploiting the recursive property of the Gamma

159



160 Appendix B. IBP as limit of a Beta-Bernoulli model

function and taking r = ✓
K and s = 1 we have:

B(
✓

K
, 1) =

�( ✓
K )

�(1 + ✓
K )

=
K

✓
. (B.3)

This defines the following probability model:

⇡k|✓ ⇠ B(
✓

K
, 1),

�xk|⇡k ⇠ Bernoulli(⇡k).
(B.4)

By integrating over all possible values for ⇡k and exploiting the conjugacy be-
tween the binomial and beta distributions, we can obtain the marginal distribution
of �U as follow

P(�U) =
KY

k=1

Z � |X|Y

x=1

P (�xk|⇡k)
�
p(⇡k) d⇡k

=
KY

k=1

B(mk +
✓
K , |X|�mk + 1)

B( ✓
K , 1)

=
KY

k=1

✓
K�(mk +

✓
K )�(|X|�mk + 1)

�(|X| + 1 + ✓
K )

(B.5)

This corresponds to a Beta-Binomial model. We can notice that this distribution
is exchangeable, since it only depends on mk.

B.2 Taking the infinite limit

The distribution on infinite binary matrices can be derived from the finite model
described in Section B.1 by taking the limit as K ! 1 and finding equivalence
classes of binary matrices. Recalling that permuting the columns does not affect
the model, it is convenient to represent the model by using a canonical ordering
such that all �U matrices that are the same up to column-permutations are equiva-
lent. Ghahramani and Griffiths (2005) define a canonical representation called the



B.2. Taking the infinite limit 161

left-ordered form of �U , denoted as [�U ] = lof(�U). Here, the binary sequences
of �xk = 0 and �xk = 1 are taken for each column (referred to as a history h),
treating the first customer as the most significant bit, and converts the binary se-
quence to a number. Thus, each column, or feature, receives a single value. Then,
the columns are ordered by descending value. It is then fundamental to calculate
the cardinality of [�U ], since this will give us the number of matrices that map
to the same left-ordered form. If �U contains identical columns, the number of
existing matrices in [�U ] is reduced, as re-ordering will produce the same matrix.
Specifically, the cardinality of [�U ] is given by

✓
K

K0 . . . K2|X|�1

◆
=

K!
Q2|X|�1

h=0 Kh!
(B.6)

with Kh is the count of the number of columns which have full history h. Under
the distribution in (B.5), the distribution of a lof equivalence class [�U ] is

P([�U ]) =
X

�U2[�U ]

P(�U) =
K!

Q2|X|�1
h=0 Kh!

KY

k=1

✓
K�(mk +

✓
K )�(|X|�mk + 1)

�(|X| + 1 + ✓
K )

.

(B.7)

For computing the limit of (B.7) as K ! 1, it is convenient to break up the
features in �U into two parts: the features for which mk = 0 and the features for
which mk > 0. Re-ordering the columns so that mk > 0 if k  K+, and mk = 0

otherwise, the product in (B.7) becomes

KY

k=1

✓
K�(mk +

✓
K )�(|X|�mk + 1)

�(|X| + 1 + ✓
K )

=
⇣ ✓

K�( ✓
K )�(|X| + 1)

�(|X| + 1 + ✓
K )

⌘K�K+
K+Y

k=1

✓
K�(mk +

✓
K )�(|X|�mk + 1)

�(|X| + 1 + ✓
K )

=
⇣ ✓

K�( ✓
K )�(|X| + 1)

�(|X| + 1 + ✓
K )

⌘K
K+Y

k=1

✓
K�(mk +

✓
K )�(|X|�mk + 1)

�( ✓
K )�(|X| + 1)

=
⇣

|X|!
Q|X|

q=1(q +
✓
K )

⌘K⇣ ✓

K

⌘K+
K+Y

k=1

(|X|�mk)!
Qmk�1

q=1 (q + ✓
K )

|X|!

(B.8)



162 Appendix B. IBP as limit of a Beta-Bernoulli model

Finally, substituting (B.8) into (B.7) and rearranging we have

lim
K!1

✓
K+

Q2|X|�1
h=0 Kh!

·
K!

K0!KK+
·

⇣
|X|!

Q|X|
q=1(q +

✓
K )

⌘K

·

K+Y

k=1

(|X|�mk)!
Qmk�1

q=1 (q + ✓
K )

|X|!

=
✓

K+

Q2|X|�1
h=0 Kh!

· 1 · exp{�✓H|X|} ·

K+Y

k=1

(|X|�mk)(mk � 1)!

|X|!
,

(B.9)

where H|X| =
P|X|

q=1 =
1
q .



Appendix C
Additional SVD results

1 5 10 15 20 25 30

0

0.5

1

1.5

2

K = 2

Number of Components

E
ig

en
va

lu
e

Figure C.1: Scree plot for truncated-SVD operated directly on the adjacency ma-
trix A.

163



164 Appendix C. Additional SVD results

1 5 10 15 20 25 30
0

2

4

6

8

K = 5

E
ig

en
va

lu
e

1 5 10 15 20 25 30
0

2

4

6

K = 6

1 5 10 15 20 25 30
0

2

4

6

K = 4

E
ig

en
va

lu
e

1 5 10 15 20 25 30
0
2
4
6
8

K = 4

1 5 10 15 20 25 30
0

2

4

6

K = 5

E
ig

en
va

lu
e

1 5 10 15 20 25 30
0

2

4

6

K = 3

1 5 10 15 20 25 30
0
2
4
6
8
10

K = 3

E
ig

en
va

lu
e

1 5 10 15 20 25 30
0

2

4

6

K = 5

1 5 10 15 20 25 30
0
1
2
3
4

K = 3

E
ig

en
va

lu
e

1 5 10 15 20 25 30
0

2

4

6

8

K = 5

1 5 10 15 20 25 30
0

2

4

6

K = 5

E
ig

en
va

lu
e

1 5 10 15 20 25 30
0

5

10

K = 7

1 5 10 15 20 25 30
0

2

4

6

K = 5

Number of Components

E
ig

en
va

lu
e

1 5 10 15 20 25 30
0

2

4

6

8

K = 4

Number of Components

Figure C.2: Scree plots for truncated-SVD operated on ⇤̂, from Sample 2 to Sample
15.


